Synthesis of analogues of oligonucleotides; synthesis of unprotected C-linked di- and tri-nucleotides

Ben J. Mellor and Eric J. Thomas*
The Department of Chemistry, The University of Manchester, Manchester, UK M13 9PL

Abstract

The Wittig reaction between the N-benzyloxymethylthymidine-derived ylide 25 and the aldehyde 16 followed by hydrogenolysis gives access to the unprotected C-linked dinucleotide 20 on a multi-gram scale. Oxidation of the dinucleotide gives the aldehyde 27 which is condensed with the ylide 25 to give the unprotected bis- C-linked trinucleotide 29 after hydrogenolysis. The mono- C-linked trinucleotide 44 is prepared by oxidation of the dinucleotide ester 34 to the aldehyde 36 which is condensed with the ylide 25 followed by hydrogenolysis to give the mono- C-linked trinucleotide ester 38. This intermediate is also prepared from the C-linked dinucleotide 20 by conversion into the phosphoramidite 41 which is coupled with 3-acetylthymidine 15 to give the mono- C-linked trinucleotide phosphite 42 . Oxidation and deprotection give the phosphate triester 38. Treatment of 38 with methanolic ammonia gives the fully unprotected mono- C-linked trinucleotide 44.

The synthesis of non-polar analogues of oligonucleotides is an area of considerable interest at present with analogues in which the phosphate residues have been replaced by isosteric fragments which are more stable to nuclease enzymes being of particular interest in the context of the development of anti-sense oligonucleotides for the control of gene transcription. ${ }^{1}$ In the preceding paper, ${ }^{2}$ a synthesis of the N-protected C-linked dinucleotide $\mathbf{3}$ using the Wittig reaction between the thymidinederived, stabilized ylide $\mathbf{1}$ and the 5^{\prime}-aldehyde hydrate $\mathbf{2}$, is described. This reaction provides efficient access to the C-linked dinucleotide but attempts to remove the p-methoxybenzyl groups were unsuccessful. ${ }^{3}$ We now report further developments of this chemistry which have led to the synthesis of unprotected C-linked di- and tri-nucleotides.

Results and discussion

The first objective was the development of an N-protecting group for the 3^{\prime}-deoxythymidine-derived ylide which could be efficiently removed after the Wittig reaction. To this end the 3^{\prime} -propenyl- 3^{\prime}-deoxythymidine 4^{4} was converted into its $2,4-$ dimethoxybenzyl-, 4,4'-dimethoxybenzhydryl- and (2-trimethylsilylethoxy)methyl derivatives 6-8 (Scheme 1). ${ }^{5,6}$ Oxidative cleavage of the 2,4-dimethoxybenzyl derivative $\mathbf{6}$ using dichlorodicyanoquinone or ceric ammonium nitrate was unsuccessful and the dimethoxybenzhydryl derivative 7 was found to be somewhat unstable to handling. However, the (2-trimethylsilylethoxy)methyl compound 8 gave 3^{\prime}-propenyl-3'-deoxythymidine 5 on treatment with tetrabutylammonium fluoride, and was taken through to the ylide $\mathbf{1 2}$ by oxidative cleavage using osmium tetraoxide ${ }^{7}$ and sodium periodate which gave the aldehyde 9 . Further oxidation then gave the acid $\mathbf{1 0}$ which was converted into the ylide $\mathbf{1 2}$ by reaction of its imidazolide $\mathbf{1 1}$ with an excess of methylene(triphenyl)phosphorane. ${ }^{2}$
The literature precedent would suggest that it is not necessary to N-protect the thymidine- 5 '-aldehyde before the Wittig reaction. ${ }^{8}$ To check this before proceeding with the synthesis of a C linked dinucleotide, the 5^{\prime}-aldehyde $\mathbf{1 6}$ was generated by oxidation of 3^{\prime}-acetylthymidine $\mathbf{1 5}$ under Pfizner-Moffatt conditions ${ }^{9}$ and treated without purification with the ylide 14 prepared from the imidazolide of 2-methylpropanoic acid (Scheme 2). A good yield (82%) of the (E)-unsaturated ketone 17 was isolated so confirming that N-protection of the thymidinederived aldehyde is not necessary for the Wittig step.

The ylide $\mathbf{1 2}$ was then added to the aldehyde $\mathbf{1 6}$ which had

been freshly prepared but not purified, and the reaction mixture was stirred at room temperature for 28 h . This procedure gave the C-linked dinucleotide $\mathbf{1 8}$ in a 78% yield based on 3^{\prime} acetylthymidine 15. However, attempts to remove the (2trimethylsilyloxy)methyl substituent from the Wittig product $\mathbf{1 8}$ using tetrabutylammonium fluoride, following the procedure which had been successful for the mononucleoside 8 , led to decomposition, perhaps because of susceptibility of the α, β unsaturated ketone towards nucleophilic attack. The double bond was therefore removed by hydrogenation which was accompanied, perhaps surprisingly, by cleavage of the 5^{\prime}-tertbutyldimethylsilyl group, to give the saturated C-linked dinucleotide 19. Attempts to remove the N-(2-trimethylsilylethoxy)methyl substituent from 19 using tetrabutylammonium fluoride were also unsuccessful with the starting material being recovered, but treatment with dilute aqueous

Scheme 1 Reagents and conditions: i, 2,4-(MeO$)_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{Ph}_{3} \mathrm{P}$, $\mathrm{EtO}_{2} \mathrm{CN}=\mathrm{NCO}_{2} \mathrm{Et}$, dioxane (43%); ii, $\left(4-\mathrm{MeOC} \mathrm{H}_{4}\right)_{2} \mathrm{CHOH}, \mathrm{Ph}_{3} \mathrm{P}$, $\mathrm{EtO}_{2} \mathrm{CN}=\mathrm{NCO}_{2} \mathrm{Et}$, dioxane (55%); iii, $\mathrm{Me}_{3} \mathrm{SiCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{Cl}, \mathrm{Pr}^{\mathrm{i}}{ }_{2}$ $\mathrm{NEt}, \mathrm{CH}_{2} \mathrm{Cl}_{2}(55 \%)$; iv, $\mathrm{Bu}_{4} \mathrm{NF}$, tetrahydrofuran; v, osmium tetraoxide (cat.), sodium periodate, dioxane (56%); vi, 2-methylbut-2-ene, sodium chlorite, sodium dihydrogen orthophosphate, tert-butyl alcohol, water (100%); vii, CO(imid.) $)_{2}$, tetrahydrofuran (100%); viii, $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CH}_{2}$, tetrahydrofuran (25%)
hydrogen fluoride gave the required deprotected C-linked dinucleotide 3^{\prime}-acetate $\mathbf{2 0}$ in an excellent yield. This compound was fully characterized spectroscopically, an accurate mass measurement confirming its molecular weight. \dagger

The reactions outlined in Scheme 2 had achieved our object-
\dagger The C-linked di- and tri-nucleotides prepared in this paper were named as thymidine derivatives to illustrate their structural homology with parent oligodeoxyribonucleotides. The numbering scheme used for the C-linked dinucleotides is outlined in the previous paper (see ref. 2) That used for numbering the mono- and bis- C-linked trinucleotides is illustrated in \mathbf{i} and ii below.

i

ii

13
14

15

17

16

18
\downarrow vi, vii

Scheme 2 Reagents and conditions: i, CO(imid.) $)_{2}$, tetrahydrofuran (100%); ii, $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CH}_{2}$, tetrahydrofuran (72%); iii, dicyclohexylcarbodiimide, $\mathrm{Cl}_{2} \mathrm{CHCO}_{2} \mathrm{H}$, dimethyl sulfoxide; iv, $\mathbf{1 4}$, pyridine, 48 h , rt (82% from 15); v, 12, pyridine, 28 h , rt (78% from 15); vi, $10 \% \mathrm{Pd} / \mathrm{C}$, methanol, $\mathrm{H}_{2}, 18 \mathrm{~h}(76 \%)$; vii, aq. HF, MeCN, 5 h , rt (90%)
ive of preparing the N-deprotected C-linked dinucleotide 20. However, in view of the difficulties experienced during the removal of the N-(2-trimethylsilylethoxy)methyl substituent, it was decided to investigate alternative N-protecting groups before proceeding with syntheses of more complex systems.

Scheme 3 Reagents and conditions: i, $\operatorname{Pr}_{2}{ }_{2} \mathrm{NEt}, \mathrm{BnOCH}_{2} \mathrm{Cl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, $16 \mathrm{~h}, \mathrm{rt}(100 \%)$; ii, osmium tetraoxide (cat.), sodium periodate, aq. dioxane (46%); iii, 2-methylbut-2-ene, sodium chlorite, sodium dihydrogen orthophosphate, tert-butyl alcohol, water (100%); iv, CO(imid.) $)_{2}$, tetrahydrofuran (100%); v, $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CH}_{2}$, tetrahydrofuran (41%); vi, 16, $\mathrm{Cl}_{2} \mathrm{CHCO}_{2} \mathrm{H}$, dicyclohexylcarbodiimide, dimethyl sulfoxide, 1 h , then $\mathbf{2 5}$, tetrahydrofuran, pyridine, 28 h , rt (67%); vii, 20% palladium hydroxide on carbon, H_{2}, methanol (60%)

The 3^{\prime}-propenyl-3'-deoxythymidine $\mathbf{4}$ was converted into its N-benzyloxymethyl derivative 21 (Scheme 3). This was converted into the ylide $\mathbf{2 5}$ by oxidative cleavage to the aldehyde $\mathbf{2 2}$, further oxidation to the carboxylic acid 23, and treatment of the corresponding acyl imidazolide 24 with two mole equivalents of methylene(triphenyl)phosphorane. ${ }^{2}$ The ylide $\mathbf{2 5}$ was obtained in an overall yield of 41% from the aldehyde 22 and gave a good yield of the C-linked dinucleotide $\mathbf{2 6}$ on coupling with the 5^{\prime}-aldehyde 16. Moreover, hydrogenation of 26 was accompanied by concomitant hydrogenolysis of the benzyloxymethyl group together with cleavage of the tertbutyldimethylsilyl group and gave the 3^{\prime}-acetyl deprotected C linked dinucleotide 20 in a single deprotection step. As gram quantities of the C-linked dinucleotide $\mathbf{2 0}$ were now available, it was possible to study aspects of its chemistry.

Scheme 4 Reagents and conditions: i, $\mathrm{Cl}_{2} \mathrm{CHCO}_{2} \mathrm{H}$, dicyclohexylcarbodiimide, dimethyl sulfoxide; ii, 25, pyridine, tetrahydrofuran, $24 \mathrm{~h}, \mathrm{rt}$ (51% from 20); iii, 20% palladium hydroxide on carbon, H_{2}, methanol (51\%)

To show that the Wittig procedure could be used to prepare analogues of higher nucleotides, the C-linked dinucleotide 20 was oxidized to the aldehyde 27 (Scheme 4). This was coupled with the ylide $\mathbf{2 5}$ to give the bis- C-linked trinucleotide $\mathbf{2 8}$. As before, hydrogenation, hydrogenolysis and desilylation using Pearlman's catalyst under an atmosphere of hydrogen gave the 3'-acetyl bis- C-linked trinucleotide 29 in a single deprotection step. The trinucleotides $\mathbf{2 8}$ and $\mathbf{2 9}$ were fully characterized by

iii, iv \mid

35
$33 \mathrm{P}=\mathrm{DMT}$
$34 \mathrm{P}=\mathrm{H}$
(DMT $=4,4^{\prime}$-dimethoxytrityl)
Scheme 5 Reagents and conditions: i, $\operatorname{Pr}^{\mathrm{i}}{ }_{2} \mathrm{NEt}$, tetrazole, $\left(\operatorname{Pr}^{\mathrm{i}}{ }_{2} \mathrm{~N}\right)_{2^{-}}$ $\mathrm{POCH}_{2} \mathrm{CH}_{2} \mathrm{CN}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 16 \mathrm{~h}$, rt (95%); ii, 15, tetrazole, tetrahydrofuran (87%); iii, iodine, tetrahydrofuran, pyridine, water (98%); iv, $\mathrm{Cl}_{2} \mathrm{CHCO}_{2} \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 2 \mathrm{~h}$, rt (76%); v, NH_{3}, methanol (100%)
spectroscopic methods with NMR assignments being made by comparison with spectra of simpler compounds. \dagger

It was decided to study the synthesis of a trinucleotide containing one phosphate link and one carbon link between the nucleosides in anticipation of the incorporation of C-linked nucleotides into oligonucleotide chains. Two strategies were envisaged for the synthesis of the mixed phosphate- C-linked trinucleotide, namely the conversion of a C-linked dinucleotide into a monophosphate containing trinucleotide using conventional methods for nucleotide synthesis, and the conversion of a dinucleotide derivative into its 5^{\prime}-aldehyde followed by a Wittig condensation with the ylide 25. Both of these approaches were studied using solution phase chemistry with the products fully characterized by spectroscopic methods. \dagger However, it may well be that the methods developed will also be suitable for solid-phase synthesis of oligonucleotide analogues.
Using standard conditions, 5^{\prime}-dimethoxytritylthymidine $\mathbf{3 0}$ was converted into the phosphoramidite 31 which was isolated as a mixture of epimers at phosphorus (Scheme 5). ${ }^{10,11}$ The phosphoramidite was condensed with 3^{\prime}-acetylthymidine 15 to give the dinucleotide phosphite triester 32 which was oxidized using iodine to give the phosphate triester 33. Treatment with dichloroacetic acid then removed the dimethoxytrityl group to give the dinucleotide triester 34. The ${ }^{1} \mathrm{H}$ NMR spectra of the phosphite and phosphate triesters 32-34 were complicated by the presence of two diastereoisomers due to the chirality at phosphorus. However, ${ }^{1} \mathrm{H}^{-13} \mathrm{C}$ HETCOR NMR spectroscopy enabled assignments to be made to the signals due to the 3^{\prime} - and $3^{\prime \prime \prime}$-protons in the two deoxyribose rings, and the remaining assignments followed from the application

Scheme 6 Reagents and conditions: i, dicyclohexylcarbodiimide, $\mathrm{Cl}_{2} \mathrm{CHCO}_{2} \mathrm{H}$, dimethyl sulfoxide; ii, 25, pyridine, tetrahydrofuran, 24 h , $\operatorname{rt}(62 \%$ from 34$)$; iii, 20% palladium hydroxide on carbon, H_{2}, methanol
of 2D-NMR techniques. Treatment with methanolic ammonia gave the dinucleotide 35 which had a considerably simplified ${ }^{1} \mathrm{H}$ NMR spectrum due to the loss of chirality at phosphorus.

Oxidation of the phosphate triester $\mathbf{3 4}$ using Pfizner-Moffatt conditions gave the aldehyde $\mathbf{3 6}$ (Scheme 6). This was separated from the dicyclohexylurea formed during the oxidation by filtration and added to the ylide $\mathbf{2 5}$ without any further purification. Following this procedure, the protected mono- C-linked trinucleotide 37 was isolated in a 62% yield based on the alcohol 34. This result shows that the Wittig procedure is compatible with the presence of phosphate triester functionality in the aldehyde component and so it should be possible to add a C linked dinucleotide unit to the 5^{\prime}-end of a growing oligonucleotide chain. Simultaneous hydrogenation, hydrogenolysis and desilylation gave the 3^{\prime}-acetyl mono- C-linked trinucleotide ester 38.
The mono- C-linked trinucleotide 38 was also prepared from the C-linked dinucleotide 20 which was protected as its dimethoxytrityl derivative 39 and saponified to the 3^{\prime}-alcohol 40 (Scheme 7). This was converted into the phosphoramidite 41 which was coupled with 3^{\prime}-acetylthymidine $\mathbf{1 5}$ to give the phosphite 42. Oxidation then gave phosphate 43 which was treated with dichloroacetic acid to remove the dimethoxytrityl group to give the mono- C-linked trinucleotide ester $\mathbf{3 8}$ which had spectroscopic and chromatographic properties identical to

Scheme 7 Reagents and conditions: i, $\mathrm{Pr}^{\mathrm{i}}{ }^{2} \mathrm{NEt}, 4,4^{\prime}$-dimethoxytrityl chloride, 4-dimethylaminopyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 4 \mathrm{~h}$, rt (95%); ii, NH_{3} methanol (81%); iii, $\operatorname{Pr}^{\mathrm{i}}{ }_{2} \mathrm{NEt}$, tetrazole, $\left(\mathrm{Pr}_{2}{ }_{2} \mathrm{~N}\right)_{2} \mathrm{POCH}_{2} \mathrm{CH}_{2} \mathrm{CN}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (90%); iv, 15, tetrazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 18 \mathrm{~h}$, rt (86%); v, iodine, tetrahydrofuran, pyridine, water, $2 \mathrm{~h}(90 \%)$; vi, $\mathrm{Cl}_{2} \mathrm{CHCO}_{2} \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}_{2}(73 \%)$; vii, NH_{3}, methanol (100%)
the sample prepared by the deprotection of the Wittig product 37.

The acetyl and cyanoethyl substituents in 38 were then cleaved using methanolic ammonia to give the fully unprotected mono- C-linked trinucleotide 44. The structure of this product was fully supported by spectroscopic data. Stereochemical assignments were made on the basis of the known structures of the starting materials. ${ }^{2}$ At no point in this work was any proliferation of stereoisomers observed, e.g. due to the epimerisation of the ribose fragments at $\mathrm{C}(1) \cdot \dagger$

Conclusions

This work has shown that the Wittig reaction between a 5^{\prime} nucleoside aldehyde and a 3^{\prime}-ketophosphorane provides efficient and flexible access to C-linked oligodeoxyribonucleotides. ${ }^{12}$ This chemistry can be used for the preparation of fully deprotected C-linked oligonucleotides on multi-gram scales using benzyloxycarbonyl groups for N-protection of the thy-
mine rings. It has been shown that the Wittig reaction can be carried out on a 5^{\prime}-aldehyde prepared from a preformed dinucleotide and so it should be possible to incorporate allcarbon linkages into growing oligonucleotide chains. Conversely, it has been shown that a C-linked dinucleotide can be incorporated into the phosphotriester approach to oligonucleotide synthesis. Further work will develop procedures for the incorporation of nucleosides other than thymidine into C linked oligodeoxyribonucleotides for hybridization and other biological investigations.

Experimental

For general experimental details see the preceding paper. The acyl imidazolide $\mathbf{1 3}(750 \mathrm{mg}, 100 \%$) was prepared by treatment of 2-methylpropanoic acid $\left(0.5 \mathrm{~cm}^{3}, 5.4 \mathrm{mmol}\right)$ with carbonyl diimidazole. Conversion to 3-methyl-1-(triphenylphosphoranyl-idene)butan-2-one $14,{ }^{13} \mathrm{mp} 172{ }^{\circ} \mathrm{C}$ (lit., ${ }^{13} 172-175^{\circ} \mathrm{C}$) was effected using an excess of methylene(triphenyl)phosphorane generated in tetrahydrofuran from methyl(triphenyl)phosphonium bromide and n-butyllithium.

(3'S)-5'-O-(tert-Butyldimethylsilyl)-3-(2,4-dimethoxybenzyl)-3^{\prime}-(prop-2-enyl)-3'-deoxythymidine 6

2,4-Dimethoxybenzyl alcohol ($56 \mathrm{mg}, 0.33 \mathrm{mmol}$) in dioxane (1 cm^{3}), triphenylphosphine ($87 \mathrm{mg}, 0.33 \mathrm{mmol}$) and diethyl azodicarboxylate $\left(0.041 \mathrm{~cm}^{3}, 0.33 \mathrm{mmol}\right)$ were added to a solution of the 3^{\prime}-propenylnucleoside $4^{4}(106 \mathrm{mg}, 0.27 \mathrm{mmol})$ in dioxane $\left(1 \mathrm{~cm}^{3}\right)$. The reaction mixture was stirred for 15 h , then concentrated under reduced pressure. Chromatography of the residue using light petroleum-ethyl acetate $(8: 1)$ as eluent gave the title compound $\mathbf{6}(63 \mathrm{mg}, 43 \%),[a]_{\mathrm{D}}+17.7\left(c 0.88\right.$ in $\left.\mathrm{CHCl}_{3}\right)$ (Found: $\mathrm{M}^{+}+\mathrm{H}, \quad 531.2875 . \quad \mathrm{C}_{28} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Si}$ requires M, 531.2890); $v_{\max } / \mathrm{cm}^{-1} 1704,1667,1646,1615,1591,1466,1261$, 1210,1158 and $836 ; \delta_{\mathrm{H}} 0.16\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2} \mathrm{Si}\right), 0.97(9 \mathrm{H}, \mathrm{s}$, SiCMe_{3}), 1.99 ($3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}$), 2.10-2.40 (5 H , overlapping m, 2^{\prime} $\mathrm{H}_{2}, 3^{\prime}-\mathrm{H}$ and $1^{\prime \prime}-\mathrm{H}_{2}$), $3.80\left(5 \mathrm{H}, \mathrm{m}, \mathrm{OMe}, 4^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime}-\mathrm{H}\right), 3.85(3$ $\mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.05\left(1 \mathrm{H}, \mathrm{dd}, J^{3}, 11,5^{\prime}-\mathrm{H}^{\prime}\right), 5.10\left(4 \mathrm{H}, \mathrm{m}, 3^{\prime \prime}-\mathrm{H}_{2}\right.$ and $\left.3-\mathrm{CH}_{2}\right), 5.80\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime \prime}-\mathrm{H}\right), 6.15\left(1 \mathrm{H}, \mathrm{t}, J 5.5,1^{\prime}-\mathrm{H}\right), 6.45$ $(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.9(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.6(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}) ; \mathrm{m} / z(\mathrm{CI})$ $531\left(\mathrm{M}^{+}+1,100 \%\right)$.
(3'S)-3-[Bis(4-methoxyphenyl)methyl]-5'-O-(tert-butyldimethyl-silyl)-3'-(prop-2-enyl)-3'-deoxythymidine 7
4,4'-Dimethoxybenzhydrol ($60 \mathrm{mg}, 0.25 \mathrm{mmol}$) in dioxane (1 cm^{3}), triphenylphosphine ($64 \mathrm{mg}, 0.25 \mathrm{mmol}$) and diethyl azodicarboxylate $\left(0.03 \mathrm{~cm}^{3}, 0.25 \mathrm{mmol}\right)$ were added to a solution of the 3^{\prime}-propenylnucleoside $\mathbf{4}(77.7 \mathrm{mg}, 0.2 \mathrm{mmol})$ in dioxane $\left(1 \mathrm{~cm}^{3}\right)$. After being stirred for 24 h , the reaction mixture was concentrated under reduced pressure. Chromatography of the residue using light petroleum-ethyl acetate $(8: 1)$ as eluent gave the title compound $7(68 \mathrm{mg}, 55 \%),[a]_{\mathrm{D}}+18.5\left(c 0.33\right.$ in $\left.\mathrm{CHCl}_{3}\right)$ (Found: $\mathrm{M}^{+}+\mathrm{H}, \quad 607.3181 . \quad \mathrm{C}_{34} \mathrm{H}_{47} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Si}$ requires M, 607.3125); $v_{\max } / \mathrm{cm}^{-1} 1704,1667,1646,1611,1514,1463,1443$, $1250,1178,1110,1036$ and $837 ; \delta_{\mathrm{H}} 0.15\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2} \mathrm{Si}\right), 0.95$ (9 $\mathrm{H}, \mathrm{s}, \mathrm{SiCMe}_{3}$), 1.95 ($3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}$), 2.10-2.40 (5 H , overlapping $\mathrm{m}, 2^{\prime}-\mathrm{H}_{2}, 3^{\prime}-\mathrm{H}$ and $1^{\prime \prime}-\mathrm{H}_{2}$), $3.75\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime}-\mathrm{H}\right), 3.82(6$ $\mathrm{H}, \mathrm{s}, 2 \times \mathrm{OMe}), 4.0\left(1 \mathrm{H}, \mathrm{dd}, J 3,11,5^{\prime}-\mathrm{H}^{\prime}\right), 4.30(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH})$, $5.10\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime \prime}-\mathrm{H}_{2}\right), 5.8\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime \prime}-\mathrm{H}\right), 6.10\left(1 \mathrm{H}, \mathrm{t}, J 6,1^{\prime}-\mathrm{H}\right)$, $6.85(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.30(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.60(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H})$; $m / z(\mathrm{CI}) 607\left(\mathrm{M}^{+}+1,10 \%\right)$ and $227(100)$.

(3'S)-5'-O-(tert-Butyldimethylsilyl)-3'-(prop-2-enyl)-3-[(2-tri-methylsilylethoxy)methyl]-3'-deoxythymidine 8

Diisopropylethylamine ($2.5 \mathrm{~cm}^{3}, 14.1 \mathrm{mmol}$) and 2-(trimethylsilylethoxy)methyl chloride $\left(1 \mathrm{~cm}^{3}, 6.4 \mathrm{mmol}\right)$ were added to a solution of the 3^{\prime}-propenylnucleoside $4(1.8 \mathrm{~g}, 4.7$ $\mathrm{mmol})$ in dichloromethane $\left(5 \mathrm{~cm}^{3}\right)$. After 15 h , the reaction was diluted with dichloromethane and washed with water and brine, then dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure.

Chromatography of the residue using light petroleum-ethyl acetate (7:3) as eluent gave the title compound $\mathbf{8}(1.18 \mathrm{~g}, 50 \%)$ (Found: $\mathrm{M}^{+}+\mathrm{H}$, 511.3017. $\mathrm{C}_{25} \mathrm{H}_{47} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Si}_{2}$ requires M, 511.3024); $v_{\max } / \mathrm{cm}^{-1} 3077,1708,1664,1466,1362,1251,1194$, 1093, 1012, 838 and 777; $\delta_{\mathrm{H}} 0.0\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{3} \mathrm{Si}\right), 0.1(6 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Me}_{2} \mathrm{Si}\right), 0.95\left(11 \mathrm{H}, \mathrm{m}, \mathrm{Me}_{3} \mathrm{CSi}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{Si}\right), 1.95(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me})$, 2.05-2.45 (5 H , overlapping $\mathrm{m}, 2^{\prime}-\mathrm{H}_{2}, 3^{\prime}-\mathrm{H}$ and $1^{\prime \prime}-\mathrm{H}_{2}$), 3.68$3.85\left(4 \mathrm{H}\right.$, overlapping $\mathrm{m}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}$ and $\left.\mathrm{OCH}_{2}\right), 4.05(1 \mathrm{H}, \mathrm{dd}$, $\left.J 2,11,5^{\prime}-\mathrm{H}^{\prime}\right), 5.10\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime \prime}-\mathrm{H}_{2}\right), 5.43\left(2 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{2}\right), 5.77(1$ $\left.\mathrm{H}, \mathrm{m}, 2^{\prime \prime}-\mathrm{H}\right), 6.12\left(1 \mathrm{H}, \mathrm{t}, J 5.5,1^{\prime}-\mathrm{H}\right)$ and $7.56(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}) ; \mathrm{m} / \mathrm{z}$ (CI) $511\left(\mathrm{M}^{+}+1,100 \%\right)$.

Tetrabutylammonium fluoride (1 m in tetrahydrofuran, 0.4 $\mathrm{cm}^{3}, 0.4 \mathrm{mmol}$) was added to the (2-trimethylsilylethoxy)methyl derivative $\mathbf{8}(20 \mathrm{mg}, 0.04 \mathrm{mmol})$ in tetrahydrofuran $\left(1 \mathrm{~cm}^{3}\right)$ and the mixture heated to $45^{\circ} \mathrm{C}$. After 24 h , the reaction had gone to 50% completion. Chromatography using ethyl acetate as eluent gave the 3^{\prime}-propenyl-3'-deoxythymidine $55^{4}[a]_{\mathrm{D}}+31$ (c 0.3 in CHCl_{3}) (Found: $\mathrm{M}^{+}+\mathrm{H}, 267.1343 . \mathrm{C}_{13} \mathrm{H}_{19} \mathrm{O}_{4} \mathrm{~N}_{2}$ requires M, 267.1345).

(3^{\prime} R)-5'-O-(tert-Butyldimethylsilyl)-3'-(formylmethyl)-3-[(2-tri-methylsilylethoxy)methyl]-3'-deoxythymidine 9

Osmium tetraoxide (1% in water, 0.1 mol equiv.) was added to the alkene $\mathbf{8}(600 \mathrm{mg}, 1.17 \mathrm{mmol})$ in aqueous dioxane ($75 \%, 10$ cm^{3}) and sodium periodate ($527 \mathrm{mg}, 2.45 \mathrm{mmol}$) was added after 15 min . The mixture was stirred vigorously for 3 h , diluted with ethyl acetate and stirred for 30 min . The precipitate was filtered off and washed with ethyl acetate. The filtrate was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Chromatography of the residue using light petroleum-ethyl acetate (2:1) gave the title compound 9 ($338 \mathrm{mg}, 56 \%$), $[a]_{\mathrm{D}}+16.0$ (c 1.56 in CHCl_{3}) (Found: $\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}$, 455.2036. $\mathrm{C}_{20} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Si}_{2}$ requires M, 455.2034); $v_{\text {max }} / \mathrm{cm}^{-1} 1708,1662,1466,1251,1088$, 837 and $777 ; \delta_{\mathrm{H}} 0.0\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{3} \mathrm{Si}\right), 0.12\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2} \mathrm{Si}\right), 0.95$ (11 $\mathrm{H}, \mathrm{m}, \mathrm{Me}_{3} \mathrm{CSi}$ and $\mathrm{CH}_{2} \mathrm{Si}$), $1.95(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 2.10(1 \mathrm{H}$, ddd, J $\left.7,7,14,2^{\prime}-\mathrm{H}\right), 2.32\left(1 \mathrm{H}\right.$, ddd, $\left.J 5,7,14,2^{\prime}-\mathrm{H}^{\prime}\right), 2.57(1 \mathrm{H}, \mathrm{m}$, $\left.1^{\prime \prime}-\mathrm{H}\right), 2.75\left(2 \mathrm{H}, \mathrm{m}, 1^{\prime \prime}-\mathrm{H}^{\prime}\right.$ and $\left.3^{\prime}-\mathrm{H}\right), 3.67\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 3.80$ $\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime}-\mathrm{H}\right), 4.0\left(1 \mathrm{H}, \mathrm{dd}, J 2.5,11,5^{\prime}-\mathrm{H}^{\prime}\right), 5.36$ and 5.37 (each $1 \mathrm{H}, \mathrm{d}, J 11,3-\mathrm{CH}), 6.15\left(1 \mathrm{H}, \mathrm{dd}, J 5,7,1^{\prime}-\mathrm{H}\right)$, $7.55(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H})$ and $9.79(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}) ; \delta_{\mathrm{C}}-5.4,-1.4,13.4$, 18.1, 18.5, 26.0, 32.1, 38.8, 46.7, 63.2, 67.5, 70.1, 85.5, 109.8, 134.1, 151.0, 163.5 and 199.8; m / z (EI) 455 ($\mathrm{M}^{+}-57,11 \%$), 397 (24) and 257 (100).

($3^{\prime} R$) -5 '-O-(tert-Butyldimethylsilyl)-3'-(carboxymethyl)-3-[(2-trimethylsilylethoxy)methyl]-3'-deoxythymidine 10

2-Methylbut-2-ene ($8 \mathrm{~cm}^{3}$), sodium chlorite ($794 \mathrm{mg}, 7 \mathrm{mmol}$) and sodium dihydrogen orthophosphate ($876 \mathrm{mg}, 5.6 \mathrm{mmol}$) in water $\left(2 \mathrm{~cm}^{3}\right)$ were added to a solution of the aldehyde 9 (360 $\mathrm{mg}, 0.7 \mathrm{mmol})$ in tert-butyl alcohol $\left(6 \mathrm{~cm}^{3}\right)$. The mixture was stirred vigorously for 5 h , then concentrated under reduced pressure and the residue diluted with ethyl acetate. The organic solution was washed with water and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure to give the title compound $10(372 \mathrm{mg}, 100 \%),[a]_{\mathrm{D}}+11.6$ (c 1.20 in CHCl_{3}) (Found: $\mathrm{M}^{+}+\mathrm{H}, 529.2738 . \mathrm{C}_{24} \mathrm{H}_{45} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Si}_{2}$ requires $M, 529.2765$); $v_{\text {max }} /$ $\mathrm{cm}^{-1} 3200 \mathrm{br}, 1708,1664,1471,1251,1093,838$ and $778 ; \delta_{\mathrm{H}} 0.0$ $\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{3} \mathrm{Si}\right), 0.12\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2} \mathrm{Si}\right), 0.95\left(11 \mathrm{H}, \mathrm{m}, \mathrm{Me}_{3} \mathrm{CSi}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{Si}\right), 1.97(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 2.20-2.45(3 \mathrm{H}$, overlapping m, 2'$\mathrm{H}_{2}$ and $\left.1^{\prime \prime}-\mathrm{H}\right), 2.70\left(2 \mathrm{H}, \mathrm{m}, 1^{\prime \prime}-\mathrm{H}^{\prime}\right.$ and $\left.3^{\prime}-\mathrm{H}\right), 3.70(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{OCH}_{2}\right), 3.82\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime}-\mathrm{H}\right), 4.03(1 \mathrm{H}, \mathrm{dd}, J 2.5,11$, $\left.5^{\prime}-\mathrm{H}^{\prime}\right), 5.43$ and 5.45 (each $\left.1 \mathrm{H}, \mathrm{d}, J 11,3-\mathrm{CH}\right), 6.17(1 \mathrm{H}, \mathrm{dd}, J$ $\left.5,7,1^{\prime}-\mathrm{H}\right)$ and $7.6(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}) ; m / z(\mathrm{FAB})\left(\mathrm{M}^{+}+1,33 \%\right)$ and 199 (100).

($\mathbf{3}^{\prime}$ R)-5'-O-(tert-Butyldimethylsilyl)-3'-(3-triphenylphosphor-anylidene-2-oxopropyl)-3-[(2-trimethylsilylethoxy)methyl]-3'deoxythymidine 12

Carbonyldiimidazole ($245 \mathrm{mg}, 1.5 \mathrm{mmol}$) was added to a solution of the acid $\mathbf{1 0}$ ($266 \mathrm{mg}, 0.5 \mathrm{mmol}$) in tetrahydrofuran (3
cm^{3}). After 16 h , the mixture was diluted with ice-cold ether and washed with ice-cold water and brine. The organic extract was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated under reduced pressure, and azeotropically dried with benzene to afford the compound 11 (291 $\mathrm{mg}, 100 \%) ; v_{\text {max }} / \mathrm{cm}^{-1} 3091,3072,3036,1815,1708,1667,1466$, $1250,1088,837,777$ and $677 ; \delta_{\mathrm{H}} 0.0\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{3} \mathrm{Si}\right), 0.12(6 \mathrm{H}, \mathrm{s}$, $\mathrm{Me}_{2} \mathrm{Si}$), $0.95\left(11 \mathrm{H}\right.$, overlapping $\mathrm{m}, \mathrm{Me}_{3} \mathrm{CSi}$ and $\mathrm{CH}_{2} \mathrm{Si}$), 1.95 (3 $\mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 2.25\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}_{2}\right), 2.92\left(2 \mathrm{H}, \mathrm{m}, 1^{\prime \prime}-\mathrm{H}\right.$ and $\left.3^{\prime}-\mathrm{H}\right)$, $3.20\left(1 \mathrm{H}, \mathrm{m}, 1^{\prime \prime}-\mathrm{H}^{\prime}\right), 3.60\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 3.9\left(3 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime}-\mathrm{H}_{2}\right), 5.39$ and 5.40 (each $\left.1 \mathrm{H}, \mathrm{d}, J 11,3-\mathrm{CH}\right), 6.23(1 \mathrm{H}, \mathrm{t}$, $\left.J 6.5,1^{\prime}-\mathrm{H}\right), 7.05(1 \mathrm{H}, \mathrm{s}$, imid. H), $7.45(1 \mathrm{H}, \mathrm{s}$, imid. H), 7.5 (1 $\mathrm{H}, \mathrm{s}, 6-\mathrm{H})$ and $8.1\left(1 \mathrm{H}, \mathrm{s}\right.$, imid. H); $m / z(\mathrm{CI}) 579\left(\mathrm{M}^{+}, 15 \%\right)$.
n-Butyllithium ($1.8 \mathrm{~cm}^{3}, 2.7 \mathrm{mmol}$) was added dropwise to a suspension of methyltriphenylphosphonium bromide (950 mg , 2.7 mmol) in tetrahydrofuran ($20 \mathrm{~cm}^{3}$) and the solution stirred for 20 min . The acyl imidazolide $11(735 \mathrm{mg}, 1.3 \mathrm{mmol})$ prepared as outlined above, was added dropwise and the reaction mixture was stirred for 6 h at $20^{\circ} \mathrm{C}$, filtered through Celite and washed with ethyl acetate. The organic extract was washed with saturated aqueous sodium hydrogen carbonate, water, brine, then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Chromatography of the residue using ethyl acetate as eluent gave the title compound $\mathbf{1 2}(250 \mathrm{mg}, 25 \%),[a]_{\mathrm{D}}+7.1(c 0.41 \mathrm{in}$ CHCl_{3}) (Found: $\mathrm{M}^{+}+\mathrm{H}$, 788.3766. $\mathrm{C}_{43} \mathrm{H}_{62} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{PSi}_{2}$ requires $M, 788.3806) ; v_{\text {max }} / \mathrm{cm}^{-1} 3055,1708,1662,1514,1466,1438$, 1262, 1106, 837 and 778; $\delta_{\mathrm{H}} 0.02\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{3} \mathrm{Si}\right), 0.10(6 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Me}_{2} \mathrm{Si}\right), 0.95\left(11 \mathrm{H}, \mathrm{m}, \mathrm{Me}_{3} \mathrm{CSi}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{Si}\right), 1.94(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me})$, $2.20\left(3 \mathrm{H}, \mathrm{m}, 1^{\prime \prime}-\mathrm{H}\right.$ and $\left.2^{\prime}-\mathrm{H}_{2}\right), 2.63\left(2 \mathrm{H}, \mathrm{m}, 1^{\prime \prime}-\mathrm{H}^{\prime}\right.$ and $\left.3^{\prime}-\mathrm{H}\right)$, $3.75\left(6 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}, 3^{\prime \prime}-\mathrm{H}, 4^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime}-\mathrm{H}_{2}\right), 5.46$ and 5.47 (each $1 \mathrm{H}, \mathrm{d}, J 11,3-\mathrm{CH}), 6.20\left(1 \mathrm{H}, \mathrm{dd}, J 5,7,1^{\prime}-\mathrm{H}\right)$, 7.50-7.70 (16 $\mathrm{H}, \mathrm{m}, \mathrm{ArH}$ and $6-\mathrm{H}) ; m / z(\mathrm{FAB}) 788\left(\mathrm{M}^{+}+1,20 \%\right)$ and 199 (100).

(E)-3'-O-Acetyl-5'-(3-methyl-2-oxobutylidene)-5'-deoxythym-

 idine 17Dicyclohexylcarbodiimide ($1.31 \mathrm{~g}, 6.36 \mathrm{mmol}$) and dichloroacetic acid $\left(0.09 \mathrm{~cm}^{3}, 1.06 \mathrm{mmol}\right)$ were added to a solution of $3^{\prime}-O$-acetylthymidine $15(0.6 \mathrm{~g}, 2.12 \mathrm{mmol})$ in dimethyl sulfoxide. After 60 min , the mixture was filtered and the precipitate washed with ethyl acetate. The ketophosphorane $\mathbf{1 4}^{12}(0.8 \mathrm{~g}$, $2.3 \mathrm{mmol})$ and pyridine $\left(0.2 \mathrm{~cm}^{3}, 2.5 \mathrm{mmol}\right)$ were added to the filtrate and the mixture stirred at room temperature for 48 h . The reaction mixture was then diluted with ethyl acetate, washed with water, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Chromatography of the residue using ethyl acetate as eluent gave the title compound $\mathbf{1 7}(\mathbf{3 5 0} \mathrm{mg}, 82 \%)$ as a foam, $[a]_{\mathrm{D}}+15.9\left(c 0.54\right.$ in $\left.\mathrm{CHCl}_{3}\right)$ (Found: $\mathrm{M}^{+}, 350.1475$. $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{6}$ requires $\left.M, 350.1478\right)$; $v_{\text {max }} / \mathrm{cm}^{-1} 1695,1468,1375$, 1234 and $1050 ; \delta_{\mathrm{H}} 1.20(6 \mathrm{H}, \mathrm{d}, J 7,2 \times \mathrm{Me}), 1.98(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me})$, $2.17\left(3 \mathrm{H}, \mathrm{s}, \mathrm{MeCO}_{2}\right), 2.30\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 2.45(1 \mathrm{H}, \mathrm{ddd}, J 2.5$, 6 and $\left.14,2^{\prime}-\mathrm{H}^{\prime}\right), 2.85\left(1 \mathrm{H}\right.$, septet, $\left.J 7,3^{\prime \prime}-\mathrm{H}\right), 4.65\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\right.$ H), $5.20\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 6.43\left(1 \mathrm{H}, \mathrm{dd}, J 6,9,1^{\prime}-\mathrm{H}\right), 6.55(1 \mathrm{H}$, dd, $\left.J 1.5,15.5,1^{\prime \prime}-\mathrm{H}\right), 6.95\left(1 \mathrm{H}, \mathrm{dd}, J 5,15.5,5^{\prime}-\mathrm{H}\right), 7.16(1 \mathrm{H}, \mathrm{s}$, $6-\mathrm{H})$ and 8.96 (1 H , br s, NH); $\delta_{\mathrm{C}} 12.7,18.0,18.2,20.9,36.3$, 39.7, 83.0, 84.8, 112.0, 128.7, 134.5, 140.1, 150.3, 163.3, 170.4 and 202.9; $m / z(\mathrm{CI}) 368\left(\mathrm{M}^{+}+18,90 \%\right)$.
(E)-3'-O-Acetyl-5'-(3-\{(3'R)-5'-O-(tert-butyldimethylsilyl)-3-[(2-trimethylsilylethoxy)methyl]-3'-deoxythymidin-3'-yl\}-2-oxopropylidene)-5'-deoxythymidine 18
Dichloroacetic acid $\left(0.011 \mathrm{~cm}^{3}, 0.13 \mathrm{mmol}\right)$ was added to a solution of $3^{\prime}-O$-acetylthymidine $\mathbf{1 5}^{7}(90 \mathrm{mg}, 0.32 \mathrm{mmol})$ and dicyclohexylcarbodiimide ($164 \mathrm{mg}, 0.8 \mathrm{mmol}$) in dimethyl sulfoxide $\left(2 \mathrm{~cm}^{3}\right)$ and the reaction mixture was stirred for 1 h then filtered. The precipitate was washed with ethyl acetate and the washings and filtrate concentrated under reduced pressure. Tetrahydrofuran ($5 \mathrm{~cm}^{3}$), the ketophosphorane 12 (208 mg , 0.26 mmol) and pyridine ($0.065 \mathrm{~cm}^{3}, 0.78 \mathrm{mmol}$) were added and the reaction mixture stirred at room temperature for 28 h . After concentration under reduced pressure, the residue was
dissolved in ethyl acetate. This solution was washed with water and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Chromatography of the residue using ethyl acetate as eluent then gave the title compound $\mathbf{1 8}(160 \mathrm{mg}, 78 \%)$, as a foam (Found: $\mathrm{M}^{+}+\mathrm{H}$, 791.3703. $\mathrm{C}_{37} \mathrm{H}_{59} \mathrm{~N}_{4} \mathrm{O}_{11} \mathrm{Si}_{2}$ requires M, 791.3719); $v_{\text {max }} / \mathrm{cm}^{-1} 1705,1665,1466,1363,1249,1088,837$ and 784; $\delta_{\mathrm{H}} 0.00\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{3} \mathrm{Si}\right), 0.10\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2} \mathrm{Si}\right), 0.9(9 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{Me}_{3} \mathrm{CSi}\right), 0.95\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Si}\right), 1.94(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 1.97(3 \mathrm{H}$, s, $\left.5^{\prime \prime \prime}-\mathrm{Me}\right)$, $2.05\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime \prime \prime \prime}-\mathrm{H}\right), 2.1\left(3 \mathrm{H}, \mathrm{s}, \mathrm{MeCO}_{2}\right)$, 2.25 (2 $\mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}$ and $\left.2^{\prime \prime \prime \prime}-\mathrm{H}^{\prime}\right), 2.40\left(1 \mathrm{H}\right.$, ddd, $J 3,6$ and $\left.14,2^{\prime}-\mathrm{H}^{\prime}\right)$, $2.68\left(1 \mathrm{H}, \mathrm{dd}, J 6,17,3^{\prime \prime}-\mathrm{H}\right), 2.75\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime \prime \prime \prime}-\mathrm{H}\right), 2.85(1 \mathrm{H}, \mathrm{dd}$, $\left.J 6,17,3^{\prime \prime}-\mathrm{H}^{\prime}\right), 3.64\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 3.77\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime \prime \prime}-\mathrm{H}\right), 3.8$ and 3.94 (each 1 H , dd, $\left.J 3,11,5^{\prime \prime \prime \prime}-\mathrm{H}\right), 4.47\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 5.06$ $\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 5.37$ and 5.39 (each $\left.1 \mathrm{H}, \mathrm{d}, J 11,3^{\prime \prime \prime}-\mathrm{CH}\right), 6.15$ $\left(1 \mathrm{H}, \mathrm{t}, J 7,1^{\prime \prime \prime}-\mathrm{H}\right), 6.30\left(1 \mathrm{H}, \mathrm{dd}, J 5,7,1^{\prime}-\mathrm{H}\right), 6.38(1 \mathrm{H}, \mathrm{dd}$, $\left.J 1.5,16,1^{\prime \prime}-\mathrm{H}\right), 6.90\left(1 \mathrm{H}, \mathrm{dd}, J 5,16,5^{\prime}-\mathrm{H}\right), 7.1(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H})$, $7.55\left(1 \mathrm{H}, \mathrm{s}, 6^{\prime \prime \prime}-\mathrm{H}\right)$ and $9.1(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) ; m / z$ (CI) 791 $\left(\mathrm{M}^{+}+1,5 \%\right)$.

3^{\prime}-O-Acetyl-5'-(3-\{(3'R)-3-[(2-trimethylsilylethoxy)methyl]-3'-deoxythymidin- 3^{\prime}-yl\}-2-oxopropyl)-5'-deoxythymidine 19

The unsaturated C-linked dinucleotide $18(185 \mathrm{mg}, 0.24 \mathrm{mmol})$ was stirred in methanol $\left(2 \mathrm{~cm}^{3}\right)$ with 10% palladium on carbon $(240 \mathrm{mg})$ under an atmosphere of hydrogen for 18 h . The reaction mixture was then filtered through Celite, the Celite washed with ethyl acetate and the filtrate and washings concentrated under reduced pressure to give the title compound $19(120 \mathrm{mg}$, 76%) as a foam; $v_{\text {max }} / \mathrm{cm}^{-1} 3467,3076,1703,1470,1368,1250$, 1083, 917, 862, 838 and $732 ; \delta_{\mathrm{H}} 0.0\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{3} \mathrm{Si}\right), 0.95(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{Si}\right), 1.9(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{Me}), 2.0\left(2 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}_{2}\right), 2.05(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{MeCO}_{2}\right), 2.2-2.35\left(4 \mathrm{H}\right.$, overlapping $\mathrm{m}, 2^{\prime}-\mathrm{H}_{2}$ and $\left.2^{\prime \prime \prime \prime}-\mathrm{H}_{2}\right), 2.62$ $\left(5 \mathrm{H}, \mathrm{m}, 1^{\prime \prime}-\mathrm{H}_{2}, 3^{\prime \prime}-\mathrm{H}_{2}\right.$ and $\left.3^{\prime \prime \prime \prime}-\mathrm{H}\right), 2.90(1 \mathrm{H}$, br s, OH), 3.60 (4 $\mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}, 4^{\prime \prime \prime \prime}-\mathrm{H}$ and $\left.5^{\prime \prime \prime \prime}-\mathrm{H}\right), 3.95\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime \prime \prime \prime}-\mathrm{H}^{\prime}\right)$, $4.95\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 5.35$ and 5.37 (each $1 \mathrm{H}, \mathrm{d}, J 10,3^{\prime \prime \prime}-\mathrm{CH}$), 6.05 ($\left.1 \mathrm{H}, \mathrm{dd}, J 3,6,1^{\prime \prime \prime}-\mathrm{H}\right), 6.15\left(1 \mathrm{H}, \mathrm{dd}, J 6,8,1^{\prime}-\mathrm{H}\right), 7.06$ (1 $\mathrm{H}, \mathrm{s}, 6-\mathrm{H}), 7.72\left(1 \mathrm{H}, \mathrm{s}, 6^{\prime \prime \prime}-\mathrm{H}\right)$ and $9.15(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) ; m / z(\mathrm{CI})$ $679\left(\mathrm{M}^{+}+1,5 \%\right)$ and $225(100)$.

3^{\prime}-O-Acetyl-5'-\{3-[(3'R)-3'-deoxythymidin-3'-yl]-2-oxopropyl\}-5^{\prime}-deoxythymidine 20

Aqueous hydrogen fluoride in acetonitrile ($10 \%, 1 \mathrm{~cm}^{3}$) was added to the saturated C-linked dinucleotide $19(23 \mathrm{mg}, 0.036$ mmol). After 5 h , saturated aqueous sodium hydrogen carbonate and ethyl acetate were added, and the organic layer washed with water and brine. The organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Chromatography of the residue using methanol (4%) in dichloromethane gave the title compound $20(18 \mathrm{mg}, 90 \%)$ as a white foam, $[a]_{\mathrm{D}}+5.8$ (c 0.69 in CHCl_{3}) (Found: $\mathrm{M}^{+}+\mathrm{NH}_{4}, 566.2455 . \mathrm{C}_{25} \mathrm{H}_{36} \mathrm{~N}_{5} \mathrm{O}_{10}$ requires M, 566.2462); $v_{\max } / \mathrm{cm}^{-1} 3400 \mathrm{br}$, $3100,1700,1669$, $1471,1363,1235,1093,838,776,738$ and $700 ; \delta_{\mathrm{H}} 1.89(3 \mathrm{H}, \mathrm{s}, 5-$ $\mathrm{Me}), 1.91\left(3 \mathrm{H}, \mathrm{s}, 5^{\prime \prime \prime}-\mathrm{Me}\right), 2.0\left(2 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}_{2}\right)$, $2.08(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{MeCO}_{2}\right), 2.24\left(3 \mathrm{H}, \mathrm{m}, 2^{\prime \prime \prime \prime}-\mathrm{H}_{2}\right.$ and $\left.2^{\prime}-\mathrm{H}\right), 2.33(1 \mathrm{H}$, ddd, $J 2,6$ and $\left.14,2^{\prime}-\mathrm{H}^{\prime}\right), 2.61\left(5 \mathrm{H}, \mathrm{m}, 1^{\prime \prime}-\mathrm{H}_{2}, 3^{\prime \prime}-\mathrm{H}_{2}\right.$ and $\left.3^{\prime \prime \prime \prime}-\mathrm{H}\right), 2.84(1 \mathrm{H}$, $\mathrm{br} \mathrm{s}, \mathrm{OH}), 3.65\left(2 \mathrm{H}, \mathrm{m}, 5^{\prime \prime \prime \prime}-\mathrm{H}_{2}\right), 3.9\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right.$ and $\left.4^{\prime \prime \prime \prime}-\mathrm{H}\right)$, $4.88\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 6.05\left(1 \mathrm{H}, \mathrm{dd}, J 4,8,1^{\prime \prime \prime}-\mathrm{H}\right), 6.15(1 \mathrm{H}, \mathrm{dd}, J$ $\left.6,8,1^{\prime}-\mathrm{H}\right), 7.05(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}), 7.70\left(1 \mathrm{H}, \mathrm{s}, 6^{\prime \prime \prime}-\mathrm{H}\right)$ and 8.80 and 9.0 (each $1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) ; ~ m / z(\mathrm{CI}) 566\left(\mathrm{M}^{+}+18,40 \%\right)$ and 549 $\left(\mathrm{M}^{+}+1,35\right)$

(3'S)-3-(Benzyloxymethyl)-5'-O-(tert-butyldimethylsilyl)-3'-(prop-2-enyl)-3'-deoxythymidine 21

Diisopropylethylamine ($18.3 \mathrm{~cm}^{3}, 0.105 \mathrm{~mol}$) and benzyloxymethyl chloride ($10.5 \mathrm{~cm}^{3}, 78.44 \mathrm{mmol}$) were added to a solution of the 3^{\prime}-propenylnucleoside $\mathbf{4}^{4}(20.0 \mathrm{~g}, 52.49 \mathrm{mmol})$ in dichloromethane $\left(150 \mathrm{~cm}^{3}\right)$. After 16 h , the reaction mixture was diluted with more dichloromethane and washed with water and brine, then dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure to afford the title compound $21(26.3 \mathrm{~g}, 100 \%)$, $[a]_{\mathrm{D}}+19.0\left(c\right.$ 1.33, CHCl_{3}) (Found: $\mathrm{M}^{+}+\mathrm{H}, 501.2782$.
$\mathrm{C}_{27} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Si}$ requires $M, 501.2784$); $v_{\text {max }} / \mathrm{cm}^{-1} 1762,1709$, 1663, 1466, 1258, 1094 and 837 ; $\delta_{\mathrm{H}} 0.16$ ($6 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2} \mathrm{Si}$), 0.97 (9 $\left.\mathrm{H}, \mathrm{s}, \mathrm{Me}_{3} \mathrm{CSi}\right)$, $1.96(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 2.10-2.40(5 \mathrm{H}$, overlapping $\mathrm{m}, 2^{\prime}-\mathrm{H}_{2}, 3^{\prime}-\mathrm{H}$ and $1^{\prime \prime}-\mathrm{H}_{2}$), 3.78 ($2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}$ and $5^{\prime}-\mathrm{H}$), 4.06 (1 $\left.\mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}^{\prime}\right), 4.74\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 5.13\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime \prime}-\mathrm{H}_{2}\right), 5.53$ (2 $\left.\mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{2}\right), 5.8\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime \prime}-\mathrm{H}\right), 6.10\left(1 \mathrm{H}, \mathrm{t}, J 5.5,1^{\prime}-\mathrm{H}\right), 7.4(5$ $\mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.61(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}) ; \delta_{\mathrm{C}}-5.1,13.5,16.5,18.6$, $26.1,36.5,36.8,39.0,63.0,70.4,72.2,85.5,85.9,109.3,117.0$, $127.5,128.1,134.3,135.2,137.9,150.8$ and $163.4 ; \mathrm{m} / \mathrm{z}$ (CI) 518 $\left(\mathrm{M}^{+}+18,18 \%\right), 501\left(\mathrm{M}^{+}+1,100\right)$.

($\mathbf{3}^{\prime}$ R)-3-(Benzyloxymethyl)-5'-O-(tert-butyldimethylsilyl)-3'-(formylmethyl)-3'-deoxythymidine 22

Osmium tetraoxide (4% aqueous solution, $8.2 \mathrm{~cm}^{3}$) was added to a solution of the 3^{\prime}-alkene $21(26.0 \mathrm{~g}, 52.48 \mathrm{mmol})$ in aqueous dioxane $\left(75 \%, 200 \mathrm{~cm}^{3}\right)$ and the mixture stirred for 15 min . Sodium periodate ($24.0 \mathrm{~g}, 0.112 \mathrm{~mol}$) was added portionwise, with cooling, over 1 h . The reaction mixture was then stirred vigorously for 16 h , diluted with ethyl acetate and stirred vigorously for a further 30 min until the precipitate formed during the reaction was uniformly dispersed throughout the mixture. The precipitate was filtered off and washed with ethyl acetate. The filtrate was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Chromatography using light petroleum-ethyl acetate (2:1) as eluent gave the title compound $22(12.0 \mathrm{~g}, 46 \%)$ (Found: $\mathrm{M}^{+}+\mathrm{H}, 503.2575 . \mathrm{C}_{26} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Si}$ requires M, 503.2577); $v_{\text {max }} /$ $\mathrm{cm}^{-1} 1708,1661,1466,1273,1093,838$ and $776 ; \delta_{\mathrm{H}} 0.15(6 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{Me}_{2} \mathrm{Si}\right), 0.95\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{3} \mathrm{CSi}\right), 1.97(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 2.11(1 \mathrm{H}$, $\left.\mathrm{m}, 2^{\prime}-\mathrm{H}\right), 2.30\left(1 \mathrm{H}\right.$, ddd, $J 5,7$ and $\left.14,2^{\prime}-\mathrm{H}^{\prime}\right), 2.64(1 \mathrm{H}, \mathrm{m}$, $\left.1^{\prime \prime}-\mathrm{H}\right), 2.77\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right.$ and $\left.1^{\prime \prime}-\mathrm{H}^{\prime}\right), 3.80\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime}-\mathrm{H}\right), 4.08$ ($\left.1 \mathrm{H}, \mathrm{dd}, J 2.5,11,5^{\prime}-\mathrm{H}^{\prime}\right), 4.73$ ($2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}$), 5.52 ($2 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{2}$), $6.16\left(1 \mathrm{H}, \mathrm{dd}, J 5,7,1^{\prime}-\mathrm{H}\right), 7.38(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, $7.54(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H})$ and $9.83(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}) ; \delta_{\mathrm{C}}-5.3,13.3,14.2$, $18.5,26.0,32.2,38.8,46.7,63.2,70.5,72.2,85.4,85.5,109.8$, 127.7, 128.3, 134.2, 138.1, 151.0, 163.5 and 199.7; m/z (CI) 503 $\left(\mathrm{M}^{+}+1,15 \%\right)$ and 247 (100).

(3^{\prime} R)-3-(Benzyloxymethyl)-5'-O-(tert-butyldimethylsilyl)-3'-(carboxymethyl)-3'-deoxythymidine 23

2-Methylbut-2-ene ($100 \mathrm{~cm}^{3}$) and a solution of sodium chlorite $(27.0 \mathrm{~g}, 0.239 \mathrm{~mol})$ and sodium dihydrogen orthophosphate $(30.0 \mathrm{~g}, 0.191 \mathrm{mmol})$ in water $\left(25 \mathrm{~cm}^{3}\right)$ were added to a solution of the aldehyde $22(12.0 \mathrm{~g}, 23.86 \mathrm{mmol})$ in tert-butyl alcohol $\left(150 \mathrm{~cm}^{3}\right)$. The reaction mixture was stirred vigorously for 5 h , then concentrated under reduced pressure and the residue diluted with ethyl acetate. The organic phase was washed with water and brine, then dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure to afford the title compound 23 ($12.4 \mathrm{~g}, 100 \%$) (Found: $\mathrm{M}^{+}+\mathrm{H}, \quad$ 519.2515. $\quad \mathrm{C}_{26} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{Si}$ requires M, 519.2526); $[a]_{\mathrm{D}}+13.9$ (c 1.53, CHCl_{3}); $v_{\text {max }} / \mathrm{cm}^{-1} 3200 \mathrm{br}$, 1708, 1664, 1468, 1259, 1095, 838 and 777; $\delta_{\mathrm{H}} 0.15$ ($6 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2} \mathrm{Si}$), 0.95 ($9 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{3} \mathrm{CSi}$), $1.95(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 2.13-2.42(3 \mathrm{H}$, overlapping $\mathrm{m}, 2^{\prime}-\mathrm{H}_{2}$ and $\left.1^{\prime \prime}-\mathrm{H}\right), 2.53\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right.$ and $\left.1^{\prime \prime}-\mathrm{H}^{\prime}\right)$, $3.80\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime}-\mathrm{H}\right), 3.95\left(1 \mathrm{H}, \mathrm{dd}, J 2.5,11,5^{\prime}-\mathrm{H}^{\prime}\right)$, $4.70\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 5.50\left(2 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{2}\right), 6.10(1 \mathrm{H}, \mathrm{dd}, J 5,7$, $\left.1^{\prime}-\mathrm{H}\right), 7.3(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.49(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}) ; m / z(\mathrm{CI}) 519$ $\left(\mathrm{M}^{+}+1,100 \%\right)$.

($\mathbf{3}^{\prime}$ R)-3-(Benzyloxymethyl)-5'-O-(tert-butyldimethylsilyl)-3'-[3-(triphenylphosphoranylidene)-2-oxopropyl]-3'-deoxythymidine 25

N, N^{\prime}-Carbonyldiimidazole ($11.6 \mathrm{~g}, 71.58 \mathrm{mmol}$) was added to a solution of the acid $23(12.4 \mathrm{~g}, 23.86 \mathrm{mmol})$ in tetrahydrofuran $\left(100 \mathrm{~cm}^{3}\right)$. After 16 h , the mixture was diluted with ice-cold ether, then washed with ice-cold water and brine. The organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated under reduced pressure, and azeotropically dried with benzene to give the imidazolide $24(13.6 \mathrm{~g}, 100 \%) ; v_{\max } / \mathrm{cm}^{-1} 3124,1738,1706,1658,1468$, 1242, 1092 and $837 ; \delta_{\mathrm{H}} 0.12\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2} \mathrm{Si}\right), 0.92(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Me}_{3} \mathrm{CSi}\right), 1.94(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 2.27\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}_{2}\right), 3.05(3 \mathrm{H}$,
overlapping $\mathrm{m}, 3^{\prime}-\mathrm{H}$ and $1^{\prime \prime}-\mathrm{H}_{2}$), $3.90\left(3 \mathrm{H}\right.$, overlapping $\mathrm{m}, 4^{\prime}-\mathrm{H}$ and $\left.5^{\prime}-\mathrm{H}_{2}\right), 4.70(2 \mathrm{H}, \mathrm{s}, \mathrm{CH} 2 \mathrm{Ph}), 5.50\left(2 \mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{2}\right), 6.15(1 \mathrm{H}$, $\left.\mathrm{t}, J 6,1^{\prime}-\mathrm{H}\right), 7.05(1 \mathrm{H}, \mathrm{m}$, imid. H), $7.20-7.60(7 \mathrm{H}, \mathrm{m}$, imid. H, ArH and $6-\mathrm{H})$ and $8.15(1 \mathrm{H}$, s, imid. H$)$; $m / z(\mathrm{CI}) 569\left(\mathrm{M}^{+}+1\right.$, 100%).
n-Butyllithium (1.6 m in hexane, $32.0 \mathrm{~cm}^{3}$) was added dropwise to a suspension of methyl(triphenyl)phosphonium bromide ($18.8 \mathrm{~g}, 52.68 \mathrm{mmol}$) in tetrahydrofuran $\left(200 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$, and the solution stirred for 20 min . The imidazolide 24 (13.6 $\mathrm{g}, 23.94 \mathrm{mmol}$) was then added dropwise and immediate precipitation was observed. The reaction mixture was stirred for 6 h at $20^{\circ} \mathrm{C}$, filtered through Celite and the retained solids washed with ethyl acetate. The filtrate was washed with saturated aqueous sodium hydrogen carbonate, water and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Chromatography of the residue using 3\% methanol in dichloromethane as eluent gave the title compound $25(7.6 \mathrm{~g}, 41 \%)$, $[a]_{\mathrm{D}}+9.7$ (c 1.52, CHCl_{3}) (Found: $\mathrm{M}^{+}+\mathrm{H}, 777.3493$. $\mathrm{C}_{45} \mathrm{H}_{54} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{PSi}$ requires $M, 777.3489$); $v_{\text {max }} / \mathrm{cm}^{-1}$ 1707, 1661, $1542,1466,1438,1266,1198,1119,837,721$ and $695 ; \delta_{\mathrm{H}} 0.15$ and 0.16 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{MeSi}), 0.94\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{3} \mathrm{CSi}\right), 1.95(3 \mathrm{H}$, $\mathrm{s}, 5-\mathrm{Me}), 2.20-2.80\left(5 \mathrm{H}\right.$, overlapping $\mathrm{m}, 2^{\prime}-\mathrm{H}_{2}, 3^{\prime}-\mathrm{H}$ and $1^{\prime \prime}-$ H_{2}), $3.75\left(1 \mathrm{H}, \mathrm{dd}, J 4,11,5^{\prime}-\mathrm{H}\right)$, $3.93\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right.$ and $3^{\prime \prime}-$ H), $4.0\left(1 \mathrm{H}, \mathrm{dd}, J 11,2,5^{\prime}-\mathrm{H}^{\prime}\right), 4.75\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right), 5.56$ (2 $\left.\mathrm{H}, \mathrm{s}, 3-\mathrm{CH}_{2}\right), 6.20\left(1 \mathrm{H}, \mathrm{dd}, J 5,7,1^{\prime}-\mathrm{H}\right), 7.30-7.75(21 \mathrm{H}, \mathrm{m}$, ArH and $6-\mathrm{H}) ; m / z(\mathrm{CI}) 777\left(\mathrm{M}^{+}+1,2.5 \%\right), 531$ (2.5) and 263 (100).

(E) -3'-O-Acetyl-5'-\{3-[(3'R)-3-benzyloxymethyl-5'-O-(tert-butyldimethylsilyl)- $\mathbf{3}^{\prime}$-deoxythymidin- $\mathbf{3}^{\prime}$-yll-2-oxopropylidene\}-5'-deoxythymidine 26

Dichloroacetic acid $\left(0.2 \mathrm{~cm}^{3}, 1.91 \mathrm{mmol}\right)$ was added to a solution of $3^{\prime}-O$-acetylthymidine $\mathbf{1 5}^{7}(1.40 \mathrm{~g}, 4.95 \mathrm{mmol})$ and dicyclohexylcarbodiimide ($2.35 \mathrm{~g}, 11.44 \mathrm{mmol}$) in dimethyl sulfoxide $\left(5 \mathrm{~cm}^{3}\right)$. After 1 h , the precipitate was removed by filtration and washed with ethyl acetate, and the filtrate concentrated under reduced pressure. Tetrahydrofuran $\left(5 \mathrm{~cm}^{3}\right)$, the ylide $25(3.0 \mathrm{~g}, 3.8 \mathrm{mmol})$ and pyridine $\left(0.5 \mathrm{~cm}^{3}\right)$ were added to the residue and the mixture stirred at room temperature for 28 h before being concentrated under reduced pressure. The residue was dissolved in ethyl acetate and the solution washed with water and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Chromatography of the residue using ethyl acetate as eluent gave the title compound $26(2.0 \mathrm{~g}$, 67%) as a foam (Found: $\mathrm{M}^{+}+\mathrm{H}, 781.3463 . \mathrm{C}_{39} \mathrm{H}_{53} \mathrm{~N}_{4} \mathrm{O}_{11} \mathrm{Si}$ requires $M, 781.3480) ; v_{\text {max }} / \mathrm{cm}^{-1} 1702,1660,1468,1365,1236$, 1091, 838, 777 and 737; $\delta_{\mathrm{H}} 0.15\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2} \mathrm{Si}\right), 0.96(9 \mathrm{H}, \mathrm{s}$, $\mathrm{Me}_{3} \mathrm{CSi}$), 1.97 and 2.00 (each $3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}, 5^{\prime \prime \prime}-\mathrm{Me}$), $2.1(1 \mathrm{H}$, $\left.\mathrm{m}, 2^{\prime \prime \prime \prime}-\mathrm{H}\right), 2.17\left(3 \mathrm{H}, \mathrm{s}, \mathrm{MeCO}_{2}\right), 2.30-2.55\left(3 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}_{2}\right.$ and $\left.2^{\prime \prime \prime \prime}-\mathrm{H}^{\prime}\right), 2.65-3.0\left(3 \mathrm{H}, \mathrm{m}, 3^{\prime \prime}-\mathrm{H}_{2}\right.$ and $\left.3^{\prime \prime \prime \prime}-\mathrm{H}\right), 3.85\left(2 \mathrm{H}, \mathrm{m}, 4^{\prime \prime \prime \prime}-\right.$ H and $\left.5^{\prime \prime \prime \prime}-\mathrm{H}\right), 4.00\left(1 \mathrm{H}, \mathrm{dd}, J 2,11,5^{\prime \prime \prime \prime}-\mathrm{H}^{\prime}\right), 4.60\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\right.$ $\mathrm{H}), 4.73\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}\right)$, $5.18\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 5.53\left(2 \mathrm{H}, \mathrm{s}, 3^{\prime \prime \prime}-\right.$ $\left.\mathrm{CH}_{2}\right), 6.20\left(1 \mathrm{H}, \mathrm{t}, J 6,1^{\prime \prime \prime}-\mathrm{H}\right), 6.32\left(1 \mathrm{H}, \mathrm{dd}, J 6,8,1^{\prime}-\mathrm{H}\right)$, 6.42 ($\left.1 \mathrm{H}, \mathrm{dd}, J 1.5,16,1^{\prime \prime}-\mathrm{H}\right), 6.95\left(1 \mathrm{H}, \mathrm{dd}, J 5,16,5^{\prime}-\mathrm{H}\right)$, $7.13(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}), 7.3(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.56\left(1 \mathrm{H}, \mathrm{s}, 6^{\prime \prime \prime}-\mathrm{H}\right)$ and $8.60(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}) ; \delta_{\mathrm{C}}-5.3,12.7,13.3,18.5,20.9,26.0,33.9$, $36.1,38.7,43.8,63.8,70.5,72.2,76.3,77.2,82.7,85.5,85.6$, $109.9,112.0,127.6,128.0,128.4,130.1,134.3,135.0,138.1$, $141.2,150.1,151.0,163.1,163.5,170.4$ and 197.3; m/z (FAB) $781\left(\mathrm{M}^{+}+1,25 \%\right)$.

The unsaturated C-linked dinucleotide $26(2.0 \mathrm{~g}, 2.56 \mathrm{mmol})$ was stirred in methanol ($15 \mathrm{~cm}^{3}$) with palladium hydroxide on carbon ($20 \%, 500 \mathrm{mg}$) under an atmosphere of hydrogen. After 16 h , the reaction mixture was filtered through Celite, the retained solids washed with methanol and the filtrate concentrated under reduced pressure. Chromatography of the residue using 4% methanol in ethyl acetate as eluent gave the saturated C-linked dinucleotide $20(850 \mathrm{mg}, 60 \%)$ as a white foam with spectroscopic data identical to those of the samples prepared from the SEM-protected system 19.
(E)-3'-O-Acetyl-5'-\{3-[($\left.3^{\prime} R\right)-5^{\prime}$-(3-[($\left.3^{\prime} R\right)$-3-benzyloxymethyl-$5^{\prime}$-O-tert-butyldimethylsilyl-3'-deoxythymidin- 3^{\prime}-yl]-2-oxopropylidene) $\mathbf{3}^{\prime}, 5^{\prime}$-dideoxythymidin- $\mathbf{3}^{\prime}$-yll-2-oxopropyl\}-5'deoxythymidine 28
Dichloroacetic acid ($0.006 \mathrm{~cm}^{3}, 0.07 \mathrm{mmol}$) was added to a solution of the C-linked dinucleotide $20(80 \mathrm{mg}, 0.14 \mathrm{mmol})$ and dicyclohexylcarbodiimide ($80 \mathrm{mg}, 0.44 \mathrm{mmol}$) in dimethyl sulfoxide $\left(1 \mathrm{~cm}^{3}\right)$. The reaction mixture was stirred at room temperature for 1 h , then filtered and the retained solids washed with one portion of tetrahydrofuran $\left(1 \mathrm{~cm}^{3}\right)$. Pyridine $(0.05$ $\left.\mathrm{cm}^{3}, 0.62 \mathrm{mmol}\right)$ and the ylide $25(400 \mathrm{mg}, 0.51 \mathrm{mmol})$ were added to the filtrate. The reaction mixture was stirred at room temperature for 24 h , then diluted with ethyl acetate and washed with water and brine. The organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Chromatography of the residue using 2% methanol in dichloromethane as eluent gave the title compound $\mathbf{2 8}(77 \mathrm{mg}, 51 \%)$ as a white foam, $[a]_{\mathrm{D}}+2.2\left(c 0.41, \mathrm{CHCl}_{3}\right)$ (Found: $\mathrm{M}^{+}+\mathrm{H}, 1045.4633$. $\mathrm{C}_{52} \mathrm{H}_{69} \mathrm{~N}_{6} \mathrm{O}_{15} \mathrm{Si}$ requires $M, 1045.4590$); $v_{\text {max }} / \mathrm{cm}^{-1} 1692,1468$, $1369,1270,1074$ and 732 ; $\delta_{\mathrm{H}} 0.10\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2} \mathrm{Si}\right), 0.90(9 \mathrm{H}, \mathrm{s}$, $\mathrm{Me}_{3} \mathrm{CSi}$), 1.90 and 1.93 (each $3 \mathrm{H}, \mathrm{d}, J$, Me), $2.02\left(4 \mathrm{H}, \mathrm{m}, 5^{\prime}-\right.$ $\mathrm{H}_{2}, 2^{\prime \prime \prime}-\mathrm{H}$ and $\left.2^{\prime \prime \prime \prime \prime \prime \prime}-\mathrm{H}\right), 2.02(3 \mathrm{H}, \mathrm{d}, J 1, \mathrm{Me}), 2.07(3 \mathrm{H}, \mathrm{s}$, MeCO_{2}), 2.15-2.35 ($4 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}_{2}, 2^{\prime \prime \prime \prime}-\mathrm{H}^{\prime}$ and $\left.2^{\prime \prime \prime \prime \prime \prime \prime}-\mathrm{H}^{\prime}\right), 2.48-$ $2.90\left(8 \mathrm{H}, \mathrm{m}, 1^{\prime \prime}-\mathrm{H}_{2}, 3^{\prime \prime}-\mathrm{H}_{2}, 3^{\prime \prime \prime \prime}-\mathrm{H}, 3^{\prime \prime \prime \prime}-\mathrm{H}_{2}\right.$ and $\left.3^{\prime \prime \prime \prime \prime \prime \prime}-\mathrm{H}\right), 3.76$ ($\left.1 \mathrm{H}, \mathrm{m}, 4^{\prime \prime \prime \prime \prime \prime \prime}-\mathrm{H}\right), 3.79\left(1 \mathrm{H}, \mathrm{dd}, J 2,11,5^{\prime \prime \prime \prime \prime \prime}-\mathrm{H}\right), 3.89(1 \mathrm{H}, \mathrm{m}$, $\left.4^{\prime}-\mathrm{H}\right), 3.93$ ($\left.1 \mathrm{H}, \mathrm{dd}, J 2,11,5^{\prime \prime \prime \prime \prime \prime \prime}-\mathrm{H}^{\prime}\right), 4.14\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime \prime \prime \prime}-\mathrm{H}\right), 4.67$ ($2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{Ph}$), $4.96\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 5.45\left(2 \mathrm{H}, \mathrm{s}, 3^{\prime \prime \prime \prime \prime \prime}-\mathrm{CH}_{2}\right)$, 6.13 ($2 \mathrm{H}, \mathrm{m}, 1^{\prime \prime \prime}-\mathrm{H}$ and $\left.1^{\prime \prime \prime \prime \prime \prime}-\mathrm{H}\right), 6.20\left(1 \mathrm{H}, \mathrm{dd}, J 6,8,1^{\prime}-\mathrm{H}\right)$, $6.32\left(1 \mathrm{H}, \mathrm{dd}, J 2,16,1^{\prime \prime \prime \prime}-\mathrm{H}\right), 6.80\left(1 \mathrm{H}, \mathrm{dd}, J 6,16,5^{\prime \prime \prime}-\mathrm{H}\right), 7.06$ and 7.09 (each $1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$ and $\left.6^{\prime \prime \prime}-\mathrm{H}\right), 7.29(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.52$ $\left(1 \mathrm{H}, \mathrm{m}, 6^{\prime \prime \prime \prime \prime}-\mathrm{H}\right)$ and 9.15 and 9.25 (each $\left.1 \mathrm{H}, \mathrm{s}, \mathrm{NH}\right) ; m / z$ (FAB) $1045\left(\mathrm{M}^{+}+1,5 \%\right)$.
3^{\prime}-O-Acetyl-5'-\{3-[(3'R)-5'-(3-[(3'R)-3'-deoxythymidin-3'-yl]-2-oxopropyl)-3', $\mathbf{5}^{\prime}$-dideoxythymidin- 3^{\prime} '-yl]-2-oxopropyl\}-5'deoxythymidine 29
The unsaturated C-linked trinucleotide 28 ($45 \mathrm{mg}, 0.043 \mathrm{mmol}$) was stirred in methanol $\left(1 \mathrm{~cm}^{3}\right)$ with palladium hydroxide (20%) on carbon (30 mg) under an atmosphere of hydrogen. After 16 h , the reaction mixture was filtered through Celite and the retained solids washed with methanol. The filtrate was concentrated under reduced pressure and chromatography of the residue using 4% methanol in dichloromethane gave the title compound $29(18 \mathrm{mg}, 51 \%)$ as a foam (Found: $\mathrm{M}^{+}+\mathrm{H}, 813.3304$. $\mathrm{C}_{38} \mathrm{H}_{49} \mathrm{~N}_{6} \mathrm{O}_{14}$ requires $M, 813.3307$); $v_{\text {max }} / \mathrm{cm}^{-1} 3433 \mathrm{br}$, 1690, 1471, 1270 and 1049; $\delta_{\mathrm{H}}\left[{ }^{2} \mathrm{H}_{4}\right]$ methanol) 1.97, 1.99 and 2.00 (each $3 \mathrm{H}, \mathrm{d}, J 1$, Me), $2.08\left(6 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}_{2}, 2^{\prime \prime \prime \prime}-\mathrm{H}, 5^{\prime \prime \prime \prime}-\mathrm{H}_{2}\right.$ and $\left.2^{\prime \prime \prime \prime \prime \prime \prime}-\mathrm{H}\right), 2.17\left(3 \mathrm{H}, \mathrm{s}, \mathrm{MeCO}_{2}\right), 2.30-2.50\left(5 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}_{2}, 2^{\prime \prime \prime \prime}-\mathrm{H}^{\prime}\right.$, $3^{\prime \prime \prime \prime}-\mathrm{H}$ and $\left.2^{\prime \prime \prime \prime \prime \prime}-\mathrm{H}^{\prime}\right), 2.60-2.90\left(9 \mathrm{H}, \mathrm{m}, 1^{\prime \prime}-\mathrm{H}_{2}, 3^{\prime \prime}-\mathrm{H}_{2}, 1^{\prime \prime \prime \prime}-\mathrm{H}_{2}\right.$, $3^{\prime \prime \prime \prime \prime}-\mathrm{H}_{2}$ and $\left.3^{\prime \prime \prime \prime \prime \prime}-\mathrm{H}\right), 3.68\left(1 \mathrm{H}, \mathrm{dt}, J 8.5,3.5,4^{\prime \prime \prime \prime}-\mathrm{H}\right), 3.79(2 \mathrm{H}$, $\mathrm{m}, 4^{\prime \prime \prime \prime \prime \prime}-\mathrm{H}$ and $\left.5^{\prime \prime \prime \prime \prime \prime}-\mathrm{H}\right), 3.97\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime \prime \prime \prime \prime \prime \prime}-\mathrm{H}^{\prime}\right), 4.04(1 \mathrm{H}, \mathrm{dt}$, $\left.J 7.5,3,4^{\prime}-\mathrm{H}\right), 5.15\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 6.05(1 \mathrm{H}, \mathrm{dd}, J 4,7.5$, $\left.1^{\prime \prime \prime \prime \prime \prime}-\mathrm{H}\right), 6.11\left(1 \mathrm{H}\right.$, dd, $\left.J 3.5,7,1^{\prime \prime \prime \prime}-\mathrm{H}\right), 6.26(1 \mathrm{H}, \mathrm{dd}, J 6,8.5$, $1^{\prime}-\mathrm{H}$) and 7.47, 7.49 and 8.05 (each $1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}, 6^{\prime \prime \prime}-\mathrm{H}$ and $\left.6^{\prime \prime \prime \prime \prime \prime}-\mathrm{H}\right)$; $m / z(\mathrm{FAB}) 835(5 \%)$ and $813\left(\mathrm{M}^{+}+1,2\right)$.
3^{\prime}-O-[(2-Cyanoethoxy)(diisopropylamino)phosphino]-5'-O-(4,4'dimethoxytrityl)thymidine 31
Diisopropylethylamine ($0.96 \mathrm{~cm}^{3}, 5.51 \mathrm{mmol}$), tetrazole (386 $\mathrm{mg}, 5.51 \mathrm{mmol}$) and bis(diisopropylamino)(2-cyanoethoxy)phosphine ($1.52 \mathrm{~cm}^{3}, 4.78 \mathrm{mmol}$) were added to a solution of the ($4,4^{\prime}$-dimethoxytrityl)thymidine $30(2.0 \mathrm{~g}, 3.68 \mathrm{mmol})$ in dichloromethane ($5 \mathrm{~cm}^{3}$). After 16 h , the reaction mixture was diluted with dichloromethane and washed with saturated aqueous sodium carbonate, water and brine. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. The residue was then dissolved in dichloromethane ($2 \mathrm{~cm}^{3}$) and added dropwise to rapidly stirred hexane at $0^{\circ} \mathrm{C}$. The resultant precipitate was filtered off and washed with ice-cold hexane, then dried under reduced pressure to give the title compound $\mathbf{3 1}$
$(2.6 \mathrm{~g}, 95 \%)$ as an off-white powder which was stored at below $0{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{M}^{-}-\mathrm{H}, 743.3210 . \mathrm{C}_{40} \mathrm{H}_{48} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{P}$ requires M, 743.3210); $v_{\max } / \mathrm{cm}^{-1} 3181,3057,3038,1692,1607,1509,1465$, $1251,1179,1035,979,912,830$ and $733 ; \delta_{\mathrm{H}} 1.22$ and 1.24 (each $6 \mathrm{H}, \mathrm{d}, J 7,2 \times \mathrm{MeCH}$), 1.46 and 1.47 (each $1.5 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}$), 2.33-2.63 ($4 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}_{2}$ and $\left.\mathrm{CH}_{2} \mathrm{CN}\right), 3.35-4.00(6 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{OCH}_{2}, 5^{\prime}-\mathrm{H}_{2}, 2 \times \mathrm{Me}_{2} \mathrm{C} H\right), 4.20\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 4.72(1 \mathrm{H}, \mathrm{m}$, $\left.4^{\prime}-\mathrm{H}\right), 6.48\left(1 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}\right), 6.87(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.35(9 \mathrm{H}, \mathrm{m}$, ArH), 7.63 and 7.68 (each $0.5 \mathrm{H}, \mathrm{s}, 6-\mathrm{H})$ and $9.1(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{NH}) ; \delta_{\mathrm{P}}(122 \mathrm{MHz}) 149.03$ and $149.45 ; \mathrm{m} / \mathrm{z}(-\mathrm{FAB}) 743\left(\mathrm{M}^{-}-\right.$ 1, 100\%).

(3'-O-Acetylthymidin-5'-O-yl)(2-cyanoethoxy)[5'-O-(4,4' dimethoxytrityl)thymidin- $\mathbf{3}^{\prime}-\mathrm{O}$-yl] phosphane 32

3^{\prime} - O-Acetylthymidine $\mathbf{1 5}(1.08 \mathrm{~g}, 3.82 \mathrm{mmol})$ and tetrazole (100 $\mathrm{mg})$ were added to a solution of the phosphoramidite $31(2.58 \mathrm{~g}$, 3.77 mmol) in tetrahydrofuran ($10 \mathrm{~cm}^{3}$). After 2 h at room temperature, the reaction mixture was diluted with dichloromethane and washed with 2% aqueous sodium carbonate and brine. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Chromatography of the residue using 4% methanol and 1% triethylamine in dichloromethane as eluent gave the title compound $\mathbf{3 2}(2.8 \mathrm{~g}, 87 \%)$ as a white foam, $[a]_{\mathrm{D}}+3.0$ (c 1.00, CHCl_{3}) (Found: $\mathrm{M}^{-}-\mathrm{H}, ~ 926.2971$. $\mathrm{C}_{46} \mathrm{H}_{49} \mathrm{~N}_{5} \mathrm{O}_{14} \mathrm{P}$ requires $M, 926.3014$); $v_{\text {max }} / \mathrm{cm}^{-1} 3184$, 3051, $2252,1691,1609,1509,1466,1250,1178,1032$ and $729 ; \delta_{\mathrm{H}} 1.43$ and 1.44 (each $1.5 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}$), 1.88 ($3 \mathrm{H}, \mathrm{s}, 5$ "-Me), 2.07 and 2.08 (each $1.5 \mathrm{H}, \mathrm{s}, \mathrm{MeCO}_{2}$), $2.17\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime \prime \prime}-\mathrm{H}\right), 2.35(2 \mathrm{H}, \mathrm{m}$, $2^{\prime}-\mathrm{H}$ and $\left.2^{\prime \prime \prime}-\mathrm{H}^{\prime}\right), 2.58\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}^{\prime}\right), 2.55$ and 2.59 (each $1 \mathrm{H}, \mathrm{t}$, $\left.J 6.5, \mathrm{CH}_{2} \mathrm{CN}\right), 3.32\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime \prime \prime}-\mathrm{H}\right), 3.50\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime \prime \prime}-\mathrm{H}^{\prime}\right), 3.76$ $(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OMe}), 3.90-4.15\left(6 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}_{2}, 4^{\prime \prime \prime}-\mathrm{H}\right.$ and OCH_{2}), 4.90 and 4.96 (each $\left.0.5 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 5.18$ and 5.24 (each $\left.0.5 \mathrm{H}, \mathrm{m}, 3^{\prime \prime \prime}-\mathrm{H}\right), 6.29\left(1 \mathrm{H}, \mathrm{m}, 1^{\prime \prime \prime}-\mathrm{H}\right), 6.36\left(1 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}\right), 6.82$ $(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.20-7.35(10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$ and $6-\mathrm{H}), 7.55(1 \mathrm{H}, \mathrm{s}$, $\left.6^{\prime \prime}-\mathrm{H}\right)$ and $9.1(2 \mathrm{H}$, br s, $2 \times \mathrm{NH}) ; \delta_{\mathrm{P}}(122 \mathrm{MHz}) 139.75$ and 139.95; m/z (-FAB) $926\left(\mathrm{M}^{-}-1,100 \%\right)$.

2-Cyanoethyl ($3^{\prime}-\mathrm{O}$-acetylthymidin- $\left.\mathbf{5}^{\prime}-\mathrm{O}-\mathrm{yl}\right)\left[5^{\prime}-\mathrm{O}-\left(4,4^{\prime}-\right.\right.$ dimethoxytrityl)thymidin- $\mathbf{3}^{\prime}-O$ - $\left.\mathbf{- l} 1\right]$ phosphinate 33

The phosphite triester $32(2.80 \mathrm{~g}, 3.02 \mathrm{mmol})$ was stirred in a solution of iodine in tetrahydrofuran-pyridine-water (ratio $40: 20: 1,0.1 \mathrm{~m}, 36 \mathrm{~cm}^{3}$). After 30 min , the reaction mixture was diluted with dichloromethane and washed with saturated aqueous sodium thiosulfate, water and brine. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Chromatography of the residue using 4% methanol and 1% triethylamine in dichloromethane as eluent gave the title compound $33(2.8 \mathrm{~g}, 98 \%)$ as a white foam (Found: $\mathrm{M}^{-}, 943.3040$. $\mathrm{C}_{46} \mathrm{H}_{50} \mathrm{~N}_{5} \mathrm{O}_{15} \mathrm{P}$ requires $M, 943.3041$); $v_{\text {max }} / \mathrm{cm}^{-1} 3184,3066$, 2252, 1692, 1608, 1509, 1467, 1251, 1029 and 729; $\delta_{\mathrm{H}} 1.38$ and 1.39 (each $1.5 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}$), 1.88 ($3 \mathrm{H}, \mathrm{s}, 5^{\prime \prime}-\mathrm{Me}$), 2.07 and 2.08 (each $1.5 \mathrm{H}, \mathrm{s}, \mathrm{MeCO}_{2}$), $2.25\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 2.40\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}^{\prime}\right.$ and $\left.2^{\prime \prime \prime}-\mathrm{H}\right), 2.68\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime \prime \prime}-\mathrm{H}^{\prime}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{CN}\right), 2.75(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CN}\right), 3.38\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime \prime \prime}-\mathrm{H}\right), 3.50\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime \prime \prime}-\mathrm{H}^{\prime}\right), 3.8(6 \mathrm{H}, \mathrm{s}$, $2 \times \mathrm{OMe})$, $4.10-4.40\left(6 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}_{2}, 4^{\prime \prime \prime}-\mathrm{H}\right.$ and $\left.\mathrm{OCH}_{2}\right)$, $5.18\left(1.5 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right.$ and $\left.3^{\prime \prime \prime}-\mathrm{H}\right), 5.27\left(0.5 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 6.28$ (1 $\left.\mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}\right), 6.40\left(1 \mathrm{H}, \mathrm{m}, 1^{\prime \prime \prime}-\mathrm{H}\right), 6.80(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.20-7.35$ $\left(10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}\right.$ and $\left.6^{\prime \prime}-\mathrm{H}\right), 7.51$ and 7.53 (each $0.5 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}$), $8.99(0.5 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 9.02(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$ and $9.1(0.5 \mathrm{H}, \mathrm{s}, \mathrm{NH})$; $\delta_{\mathrm{P}}(122 \mathrm{MHz})-2.01 ; \mathrm{m} / \mathrm{z}(-\mathrm{FAB}) 943\left(\mathrm{M}^{-}, 40 \%\right), 890(50)$ and 416 (100).

2-Cyanoethyl ($\mathbf{3}^{\prime}$-O-acetylthymidin-5'-O-ylthymidin-3'-O-yl)phosphinate 34
 Dichloroacetic acid ($0.5 \mathrm{~cm}^{3}, 8.2 \mathrm{mmol}$) was added to a solution

 of the dimethoxytrityl ether $33(2.80 \mathrm{~g}, 2.97 \mathrm{mmol})$ in dichloromethane ($25 \mathrm{~cm}^{3}$). After 2 h at room temperature, no starting material was observable by TLC, and triethylamine ($2 \mathrm{~cm}^{3}$) was added. The reaction mixture was diluted with dichloromethane and washed with 2% aqueous sodium carbonate and brine. The combined aqueous extracts then extracted repeatedly withdichloromethane. The organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Chromatography of the residue using 8% methanol in dichloromethane gave the title compound $34(1.4 \mathrm{~g}, 76 \%)$ as a white powder, $[a]_{\mathrm{D}}+5.2$ (c 0.67, CHCl_{3}) (Found: $\mathrm{M}^{+}+\mathrm{Na}, 664.1643 . \mathrm{C}_{25} \mathrm{H}_{32} \mathrm{~N}_{5} \mathrm{O}_{13} \mathrm{PNa}$ requires $M, 664.1632$); $v_{\max } / \mathrm{cm}^{-1} 3405 \mathrm{br}, 3199 \mathrm{br}, 3056,2253$, $1690,1472,1370,1276,1245$ and 1024; $\delta_{\mathrm{H}}\left[{ }^{2} \mathrm{H}_{4}\right]$ methanol) 2.06 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), $2.10(3 \mathrm{H}, \mathrm{d}, J 1, \mathrm{Me}), 2.28$ and 2.29 (each $1.5 \mathrm{H}, \mathrm{s}$, MeCO_{2}), $2.62\left(3 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}_{2}\right.$ and $\left.2^{\prime \prime \prime}-\mathrm{H}\right), 2.76\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime \prime \prime}-\mathrm{H}^{\prime}\right)$, $3.20\left(2 \mathrm{H}, \mathrm{t}, J 5.5, \mathrm{CH}_{2} \mathrm{CN}\right), 3.99\left(2 \mathrm{H}, \mathrm{m}, 5^{\prime \prime \prime}-\mathrm{H}_{2}\right), 4.43(2 \mathrm{H}, \mathrm{m}$, $4^{\prime}-\mathrm{H}$ and $\left.4^{\prime \prime \prime}-\mathrm{H}\right), 4.54\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}\right), 4.62\left(2 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}_{2}\right), 5.35$ $\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime \prime \prime}-\mathrm{H}\right), 5.54\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 6.44\left(1 \mathrm{H}, \mathrm{dd}, J 6.5,7.5,1^{\prime}-\right.$ H), $6.49\left(1 \mathrm{H}, \mathrm{m}, 1^{\prime \prime \prime}-\mathrm{H}\right), 7.73$ and 7.75 (each $\left.1.5 \mathrm{H}, \mathrm{d}, J 1,6-\mathrm{H}\right)$ and $7.98\left(1 \mathrm{H}, \mathrm{s}, 6^{\prime \prime}-\mathrm{H}\right) ; \delta_{\mathrm{C}}\left[{ }^{2} \mathrm{H}_{4}\right]$ methanol $) 12.6,12.7,20.1,20.2$, $20.9,37.4,39.5,62.5,64.6,64.7,69.1,69.2,69.8,75.0,75.1$, $80.8,80.9,81.0,81.1,83.8,83.9,86.1,86.7,86.9,87.0,111.9$, $112.2,118.6,137.7,137.9,152.2,152.3,166.2,166.3,171.4$ and 172.3; $\delta_{\mathrm{P}}\left({ }^{2} \mathrm{H}_{4}\right]$ methanol) -1.55 and $-1.62 ; \mathrm{m} / \mathrm{z}$ (FAB) 664 $\left(\mathrm{M}^{+}+23,10 \%\right), 642\left(\mathrm{M}^{+}+1,2\right)$ and $239(100)$.
Ammonia gas was bubbled through a solution of the phosphate $34(20 \mathrm{mg}, 0.031 \mathrm{mmol})$ in methanol $\left(1 \mathrm{~cm}^{3}\right)$ for 10 min . The flask was then sealed and left at room temperature for 16 h. The reaction mixture was concentrated under reduced pressure, and the residue azeotroped with methanol-water (1:1) and then with anhydrous methanol to give thymidin-5'-O-yl)thymidin-3'-O-yl)phosphinate $35(19 \mathrm{mg}, 100 \%)$ as a colourless glass (Found: M^{-}, 545.1263. $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{12} \mathrm{P}$ requires M, $545.1285) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3395 \mathrm{br}, 1702$, 1690, 1667, 1475 , 1374, 1276 and 1083; $\delta_{\mathrm{H}}\left(\mathrm{D}_{2} \mathrm{O}\right) 1.69$ and 1.71 (each $3 \mathrm{H}, \mathrm{d}, J 1$, $\mathrm{Me}), 2.18\left(3 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}_{2}\right.$ and $\left.2^{\prime \prime \prime}-\mathrm{H}\right), 2.38(1 \mathrm{H}$, ddd, $J 3.5,6.5$ and $\left.14,2^{\prime \prime \prime}-\mathrm{H}^{\prime}\right)$, 3.60 and 3.64 (each 1 H , dd, $J 3.5,12.5,5^{\prime \prime \prime}-\mathrm{H}$), $3.95\left(4 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}, 4^{\prime \prime \prime}-\mathrm{H}\right.$ and $\left.5^{\prime}-\mathrm{H}_{2}\right), 4.40\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 4.58$ $\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime \prime \prime}-\mathrm{H}\right), 6.02\left(1 \mathrm{H}, \mathrm{t}, J 6.5,1^{\prime}-\mathrm{H}\right), 6.13\left(1 \mathrm{H}, \mathrm{t}, J 6.5,1^{\prime \prime \prime}-\right.$ H), $7.48(1 \mathrm{H}, \mathrm{d}, J 1,6-\mathrm{H})$ and $7.50\left(1 \mathrm{H}, \mathrm{d}, J 1,6^{\prime \prime}-\mathrm{H}\right)$; $\delta_{\mathrm{C}}\left(\mathrm{D}_{2} \mathrm{O}\right) 12.6,38.5,39.6,61.6,65.7,69.4,71.9,75.8,75.9,85.7$, $85.8,85.9,86.0,86.5,86.6,112.4,138.2,138.3,152.3,152.5$, $167.0,167.2$ and $171.9 ; \delta_{\mathrm{P}}\left(\mathrm{D}_{2} \mathrm{O}\right)-0.24 ; \mathrm{m} / \mathrm{z}(-\mathrm{FAB}) 545\left(\mathrm{M}^{-}\right.$, 100%).

2-Cyanoethyl (5^{\prime} - $\left\{(E)\right.$-3-[($\left.3^{\prime} R\right)$-3-benzyloxymethyl-5'-O-tert-

 butyldimethylsilyl-3'-deoxythymidin- $\mathbf{3}^{\prime}$-yl]-2-oxopropylidene \}-5^{\prime}-deoxythymidin- 3^{\prime} - O-yl)(3^{\prime}-acetylthymidin- 5^{\prime} - O-yl)phosphinate 37Dicyclohexylcarbodiimide ($123 \mathrm{mg}, 0.6 \mathrm{mmol}$) and dichloroacetic acid $\left(0.007 \mathrm{~cm}^{3}, 0.086 \mathrm{mmol}\right)$ were added to a solution of the dinucleotide derivative $34(110 \mathrm{mg}, 0.171 \mathrm{mmol})$ in dimethyl sulfoxide $\left(1 \mathrm{~cm}^{3}\right)$. After 1 h at room temperature, the reaction mixture was filtered and the retained solids washed with tetrahydrofuran $\left(0.5 \mathrm{~cm}^{3}\right)$. The ylide $25(500 \mathrm{mg}, 0.635$ $\mathrm{mmol})$ and pyridine $\left(0.1 \mathrm{~cm}^{3}, 1.2 \mathrm{mmol}\right)$ were then added to the filtrate. The reaction mixture was stirred at room temperature for 24 h , diluted with dichloromethane and washed with water and brine. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Chromatography of the residue using 1% methanol in dichloromethane gave the title compound 37 ($120 \mathrm{mg}, 62 \%$) as an oil; $v_{\text {max }} / \mathrm{cm}^{-1} 3170,2253,1704,1667$, $1468,1275,1027,837$ and $753 ; \delta_{\mathrm{H}} 0.10\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{2} \mathrm{Si}\right), 0.90(9$ $\left.\mathrm{H}, \mathrm{s}, \mathrm{Me}_{3} \mathrm{CSi}\right), 1.90(9 \mathrm{H}, \mathrm{s}, 3 \times \mathrm{Me}), 2.05\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime \prime \prime \prime \prime}-\mathrm{H}\right), 2.08$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{MeCO}_{2}$), $2.23\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime \prime \prime \prime \prime \prime}-\mathrm{H}^{\prime}\right), 2.35\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}_{2}\right.$), 2.5 and 2.58 (each $\left.1 \mathrm{H}, \mathrm{m}, 2^{\prime \prime \prime}-\mathrm{H}\right), 2.76\left(5 \mathrm{H}\right.$, overlapping m, $3^{\prime \prime \prime \prime}$ $\mathrm{H}_{2}, 3^{\prime \prime \prime \prime \prime}-\mathrm{H}$ and $\left.\mathrm{CH}_{2} \mathrm{CN}\right), 3.74\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime \prime \prime \prime \prime}-\mathrm{H}\right), 3.76$ and 3.82 (each $\left.1 \mathrm{H}, \mathrm{dd}, J 2,11,5^{\prime \prime \prime \prime \prime \prime}-\mathrm{H}\right), 4.15\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 4.32(4 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}_{2} \mathrm{O}$ and $5^{\prime}-\mathrm{H}_{2}$), $4.65\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Ph}\right.$ and $\left.4^{\prime \prime \prime}-\mathrm{H}\right), 5.02(1$ $\left.\mathrm{H}, \mathrm{m}, 3^{\prime \prime \prime}-\mathrm{H}\right), 5.23$ and 5.26 (each $\left.0.5 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{H}\right), 5.45(2 \mathrm{H}, \mathrm{s}$, $\left.3^{\prime \prime \prime \prime \prime}-\mathrm{CH}_{2}\right), 6.11\left(2 \mathrm{H}, \mathrm{m}, 1^{\prime \prime \prime}-\mathrm{H}\right.$ and $\left.1^{\prime \prime \prime \prime \prime}-\mathrm{H}\right), 6.25\left(1 \mathrm{H}, \mathrm{q}, J 7,1^{\prime}-\right.$ $\mathrm{H}), 6.34$ and 6.38 (each $\left.0.5 \mathrm{H}, \mathrm{dd}, J 1.5,16,1^{\prime \prime \prime \prime}-\mathrm{H}\right), 6.85$ and 6.87 (each $0.5 \mathrm{H}, \mathrm{dd}, J 16,4,5^{\prime \prime \prime}-\mathrm{H}$), 7.02 and 7.04 (each 0.5 H , s, $6-\mathrm{H}), 7.28\left(6 \mathrm{H}, \mathrm{m}, \operatorname{ArH}\right.$ and $\left.6^{\prime \prime}-\mathrm{H}\right), 7.52\left(1 \mathrm{H}, \mathrm{s}, 6^{\prime \prime \prime \prime \prime}-\mathrm{H}\right)$ and $9.70(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{NH}) ; \delta_{\mathrm{P}}-1.83$ and $-2.01 ; \mathrm{m} / \mathrm{z}(-\mathrm{ES}) 1137$ ($\mathrm{M}^{-}, 30 \%$).
3^{\prime}-O-Acetyl-5'-\{3-[($\left.\mathbf{3}^{\prime} R\right)$-5'-(4,4'-dimethoxytrityl)-3'-deoxy-thymidin- $\mathbf{3}^{\prime}$-yl]-2-oxopropyl $\}$ - 5^{\prime} '-deoxythymidine 39
Diisopropylethylamine ($0.12 \mathrm{~cm}^{3}, 0.68 \mathrm{mmol}$), 4,4'-dimethoxytrityl chloride ($180 \mathrm{mg}, 0.55 \mathrm{mmol}$) and 4-dimethylaminopyridine (5 mg) were added to a solution of the C-linked dinucleotide $20(250 \mathrm{mg}, 0.46 \mathrm{mmol})$ in dichloromethane (5 cm^{3}). After 4 h , the reaction mixture was diluted with dichloromethane, washed with water and brine and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After concentration under reduced pressure, chromatography of the residue using 3% methanol and 1% triethylamine in dichloromethane as eluent gave the title compound 39 (370 mg , 95%) as a white foam, $[a]_{\mathrm{D}}+4.1$ (c 1.02, CHCl_{3}) (Found: M^{-}, 850.3396. $\mathrm{C}_{46} \mathrm{H}_{50} \mathrm{~N}_{4} \mathrm{O}_{12}$ requires $M, 850.3425$); $v_{\text {max }} / \mathrm{cm}^{-1} 3207$, 3058, 1692, 1607, 1509, 1466, 1250, 1177 and 1033; $\delta_{\mathrm{H}} 1.50$ ($3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}$), $1.90\left(3 \mathrm{H}, \mathrm{s}, 5^{\prime \prime \prime}-\mathrm{Me}\right)$, $1.94\left(3 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}_{2}\right.$ and $\left.2^{\prime \prime \prime \prime}-\mathrm{H}\right), 2.06\left(3 \mathrm{H}, \mathrm{s}, \mathrm{MeCO}_{2}\right)$, $2.17\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 2.30-2.60$ $\left(6 \mathrm{H}\right.$, overlapping $\mathrm{m}, 2^{\prime}-\mathrm{H}^{\prime}, 1^{\prime \prime}-\mathrm{H}_{2}, 3^{\prime \prime}-\mathrm{H}_{2}$ and $\left.2^{\prime \prime \prime \prime}-\mathrm{H}^{\prime}\right), 2.76(1 \mathrm{H}$, $\left.\mathrm{m}, 3^{\prime \prime \prime \prime}-\mathrm{H}\right), 3.24\left(1 \mathrm{H}, \mathrm{dd}, J 4,11,5^{\prime \prime \prime}-\mathrm{H}\right), 3.47(1 \mathrm{H}$, dd, J 3, 11, $\left.5^{\prime \prime \prime \prime}-\mathrm{H}^{\prime}\right), 3.75\left(7 \mathrm{H}, \mathrm{m}, 2 \times\right.$ OMe and $\left.4^{\prime \prime \prime \prime}-\mathrm{H}\right), 3.87\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right)$, $4.95\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 6.08\left(1 \mathrm{H}, \mathrm{dd}, J 4,7,1^{\prime \prime \prime}-\mathrm{H}\right), 6.20(1 \mathrm{H}$, dd, $\left.J 5,8,1^{\prime}-\mathrm{H}\right), 6.80(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.05(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}), 7.25$ $(7 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.42(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.57\left(1 \mathrm{H}, \mathrm{s}, 6^{\prime \prime \prime}-\mathrm{H}\right)$; $\mathrm{m} / \mathrm{z}(-\mathrm{FAB}) 850\left(\mathrm{M}^{-}, 75 \%\right)$ and 547 (40).

5^{\prime} - $\left\{3\right.$-[($\left.3^{\prime} R\right)$ - 5^{\prime}-(4,4'-Dimethoxytrityl)-3'-deoxythymidin- 3^{\prime}-yl]-2-oxopropyl\}-5'-deoxythymidine 40

Ammonia gas was bubbled through a solution of the acetate 39 $(260 \mathrm{mg}, 0.31 \mathrm{mmol})$ in methanol $\left(15 \mathrm{~cm}^{3}\right)$ at room temperature for 10 min . The solution was warmed to $40^{\circ} \mathrm{C}$ for 5 h , then concentrated under reduced pressure. The residue was dissolved in dichloromethane, washed with water and brine, then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Concentration under reduced pressure gave the title compound $\mathbf{4 0}(200 \mathrm{mg}, 81 \%)$ as a white foam, $[a]_{\mathrm{D}}+4.0(c 0.69$, CHCl_{3}) (Found: M^{-}, 808.3347. $\mathrm{C}_{44} \mathrm{H}_{48} \mathrm{~N}_{4} \mathrm{O}_{11}$ requires M, 808.3320); $v_{\max } / \mathrm{cm}^{-1} 3452,3184,3057,1653,1608,1509,1469$, $1255,1178,1035$ and 733 ; $\delta_{\mathrm{H}} 1.50(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 1.87(3 \mathrm{H}, \mathrm{s}$, $\left.5^{\prime \prime \prime}-\mathrm{Me}\right), 1.95\left(3 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}_{2}\right.$ and $\left.2^{\prime \prime \prime \prime}-\mathrm{H}\right), 2.15\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right)$, $2.30\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}^{\prime}\right.$ and $\left.2^{\prime \prime \prime \prime}-\mathrm{H}^{\prime}\right), 2.44\left(2 \mathrm{H}, \mathrm{m}, 3^{\prime \prime}-\mathrm{H}_{2}\right), 2.46$ and 2.57 (each $\left.1 \mathrm{H}, \mathrm{m}, 1^{\prime \prime}-\mathrm{H}\right), 2.75\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime \prime \prime}-\mathrm{H}\right), 3.23(1 \mathrm{H}, \mathrm{dd}, J$ $\left.4,11,5^{\prime \prime \prime}-\mathrm{H}\right), 3.44\left(1 \mathrm{H}, \mathrm{dd}, J 3,11,5^{\prime \prime \prime \prime}-\mathrm{H}^{\prime}\right), 3.75(8 \mathrm{H}$, overlapping m, $4^{\prime}-\mathrm{H}, 4^{\prime \prime \prime}-\mathrm{H}$ and $\left.2 \times \mathrm{OMe}\right), 4.14\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 6.05(1$ $\left.\mathrm{H}, \mathrm{dd}, J 4,6,1^{\prime \prime \prime}-\mathrm{H}\right), 6.12\left(1 \mathrm{H}, \mathrm{t}, J 7,1^{\prime}-\mathrm{H}\right), 6.80(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, $7.05(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}), 7.24(7 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.38(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.57\left(1 \mathrm{H}, \mathrm{s}, 6{ }^{\prime \prime \prime}-\mathrm{H}\right)$; $m / z(-\mathrm{FAB}) 808\left(\mathrm{M}^{-}, 40 \%\right)$.
$5^{\prime}-\left\{3-\left[\left(3^{\prime} R\right)-5^{\prime}-\left(4,4^{\prime}\right.\right.\right.$-Dimethoxytrityl)-3'-deoxythymidin- 3^{\prime}-yl]-2-oxopropyl\}-3'-O-[2-cyanoethoxy(diisopropylamino)phosphino]-5^{\prime}-deoxythymidine 41
Diisopropylethylamine ($0.02 \mathrm{~cm}^{3}, 0.12 \mathrm{mmol}$), tetrazole (7 mg , 0.12 mmol), and bis(diisopropylamino)-2-cyanoethoxyphosphine $\left(0.08 \mathrm{~cm}^{3}, 0.50 \mathrm{mmol}\right)$ were added to a solution of the C-linked dinucleotide $40(200 \mathrm{mg}, 0.25 \mathrm{mmol})$ in dichloromethane ($3 \mathrm{~cm}^{3}$). After 16 h , the reaction mixture was diluted with dichloromethane and extracted with saturated aqueous sodium carbonate and brine. The two aqueous layers were extracted with dichloromethane and the organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Chromatography of the residue using 4% methanol and 1% triethylamine in dichloromethane as eluent gave the title compound $41(225 \mathrm{mg}, 90 \%)$ as a white foam, $[a]_{\mathrm{D}}+3.0(c 0.96$, $\left.\mathrm{CHCl}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1} 3200 \mathrm{br}, 1689,1510,1467,1252,1179$ and 1034; $\delta_{\mathrm{H}} 1.15$ ($6 \mathrm{H}, \mathrm{d}, J 7,2 \times \mathrm{CHMe}$), 1.22 and 1.23 (each 3 H , d, J 7, CHMe), $1.87(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 1.95\left(2 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}_{2}\right)$, 2.10-2.8 (14 H , overlapping m, $2^{\prime}-\mathrm{H}_{2}, 1^{\prime \prime}-\mathrm{H}_{2}, 3^{\prime \prime}-\mathrm{H}_{2}, 2^{\prime \prime \prime \prime}-\mathrm{H}_{2}$, $3^{\prime \prime \prime \prime}-\mathrm{H}, \mathrm{CH}_{2} \mathrm{CN}$ and $\left.5^{\prime \prime \prime}-\mathrm{Me}\right), 3.20-3.88(13 \mathrm{H}$, overlapping m, $\mathrm{OCH}_{2}, 4^{\prime \prime \prime \prime}-\mathrm{H}, 5^{\prime \prime \prime \prime}-\mathrm{H}_{2}, 2 \times \mathrm{Me}_{2} \mathrm{CH}$ and $\left.2 \times \mathrm{OMe}\right), 4.17(2 \mathrm{H}$, $\mathrm{m}, 3^{\prime}-\mathrm{H}$ and $\left.4^{\prime}-\mathrm{H}\right), 6.08\left(1 \mathrm{H}, \mathrm{dd}, J 3.5,6.5,1^{\prime \prime \prime \prime}-\mathrm{H}\right), 6.17(1 \mathrm{H}$, $\left.\mathrm{m}, 1^{\prime}-\mathrm{H}\right), 6.79(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.2(10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$ and $6-\mathrm{H})$ and $7.56\left(1 \mathrm{H}, \mathrm{s}, 6^{\prime \prime \prime}-\mathrm{H}\right) ; \delta_{\mathrm{P}} 149.30 ; m / z(-\mathrm{FAB}) 954\left(\mathrm{M}^{-}-54\right.$, 100%).

2-Cyanoethyl (5^{\prime} - $\left\{3-\left[\left(3^{\prime} R\right)\right.\right.$ - 3^{\prime}-deoxythymidin- 3^{\prime}-yl]-2-oxopropyl $\}-5^{\prime}$-deoxythymidin- 3^{\prime}-yl)($\mathbf{3}^{\prime}$-acetylthymidin-5'-O-yl)phosphinate 38
3^{\prime} ' O-Acetylthymidine $\mathbf{1 5}$ ($153 \mathrm{mg}, 0.542 \mathrm{mmol}$) and tetrazole (5 mg) were added to a solution of phosphoramidite $41(420 \mathrm{mg}$, 0.417 mmol) in dichloromethane ($5 \mathrm{~cm}^{3}$). The reaction mixture was stirred at room temperature for 18 h , then diluted with dichloromethane and washed with 2% aqueous sodium carbonate, water and brine. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Chromatography of the residue using 2% methanol in dichloromethane gave the phosphite $42(427 \mathrm{mg}, 86 \%)$ as a white foam; $m / z(-\mathrm{FAB}) 1190$ ($\mathrm{M}^{-}, 95 \%$) and 970 (100); $\delta_{\mathrm{P}} 175.27$ and 176.68.

The phosphite $\mathbf{4 2}(100 \mathrm{mg}, 0.084 \mathrm{mmol})$ was stirred in a solution of iodine in tetrahydrofuran-pyridine-water ($40: 20: 1,0.1$ $\mathrm{m}, 5 \mathrm{~cm}^{3}$) for 2 h . The reaction mixture was then diluted with dichloromethane and washed with saturated aqueous sodium thiosulfate, water and brine. The organic extract was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Chromatography of the residue using 3% methanol and 1% triethylamine in dichloromethane as eluent gave the phosphate 43 (91 mg , 90%) as a white foam; $\delta_{\mathrm{P}} 8.45$ and 8.64 .

Dichloroacetic acid ($0.1 \mathrm{~cm}^{3}, 1.21 \mathrm{mmol}$) was added to a solution of the phosphate $\mathbf{4 3}(90 \mathrm{mg}, 0.075 \mathrm{mmol})$ in dichloromethane $\left(5 \mathrm{~cm}^{3}\right)$. After 2 h , triethylamine $\left(0.2 \mathrm{~cm}^{3}\right)$ was added and the reaction mixture diluted with dichloromethane, and washed with 2% aqueous sodium carbonate and brine. The aqueous extracts were exhaustively extracted with dichloromethane and the organic extracts dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Chromatography of the residue using 8% methanol in dichloromethane gave the title compound $38(49 \mathrm{mg}, 73 \%)$ as a colourless glass, $[a]_{\mathrm{D}}+2.1(c 0.42, \mathrm{MeOH})$ (Found: $\mathrm{M}^{+}+\mathrm{H}, \quad 906.2942 . \quad \mathrm{C}_{38} \mathrm{H}_{49} \mathrm{~N}_{7} \mathrm{O}_{17} \mathrm{P}$ requires M, 906.2923); $v_{\text {max }} / \mathrm{cm}^{-1} 3416 \mathrm{br}$, 3193br, 2250, 1693, 1470, 1274, 1031, 1006 and $756 ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{4}\right]\right.$ methanol $) 1.97(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{Me})$, $1.99(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.1\left(3 \mathrm{H}, \mathrm{m}, 2^{\prime \prime \prime \prime \prime}-\mathrm{H}\right.$ and $\left.5^{\prime \prime \prime}-\mathrm{H}_{2}\right), 2.18$ and 2.19 (each $\left.1.5 \mathrm{H}, \mathrm{s}, \mathrm{MeCO}_{2}\right), 2.36\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime \prime \prime \prime \prime \prime}-\mathrm{H}^{\prime}\right), 2.50-2.80(8 \mathrm{H}$, overlapping $\mathrm{m}, 2^{\prime}-\mathrm{H}_{2}, 2^{\prime \prime \prime}-\mathrm{H}, 1^{\prime \prime \prime \prime}-\mathrm{H}_{2}, 3^{\prime \prime \prime \prime}-\mathrm{H}_{2}$ and $3^{\prime \prime \prime \prime \prime \prime}-\mathrm{H}$), 2.86 (1 $\left.\mathrm{H}, \mathrm{dd}, J 4.5,14,2^{\prime \prime \prime}-\mathrm{H}^{\prime}\right)$, $3.02\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CN}\right)$, $3.79(2 \mathrm{H}, \mathrm{m}$, $4^{\prime \prime \prime \prime \prime}-\mathrm{H}$ and $\left.5^{\prime \prime \prime \prime \prime}-\mathrm{H}\right), 3.96\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime \prime \prime \prime \prime}-\mathrm{H}^{\prime}\right), 4.16\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime \prime \prime}-\mathrm{H}\right)$, $4.34\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 4.42\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2}\right), 4.51\left(2 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}_{2}\right)$, $5.02\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime \prime \prime}-\mathrm{H}\right), 5.42\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 6.12(1 \mathrm{H}, \mathrm{dd}, J 4,7$, $\left.1^{\prime \prime \prime \prime \prime}-\mathrm{H}\right), 6.24\left(1 \mathrm{H}, \mathrm{m}, 1^{\prime \prime \prime}-\mathrm{H}\right), 6.35\left(1 \mathrm{H}, \mathrm{t}, J 7.5,1^{\prime}-\mathrm{H}\right), 7.46$ and 7.47 (each $0.5 \mathrm{H}, \mathrm{s}, 6^{\prime \prime}-\mathrm{H}$), 7.63 and 7.64 (each $0.5 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}$) and $8.05\left(1 \mathrm{H}, \mathrm{s}, 6^{\prime \prime \prime \prime}-\mathrm{H}\right) ; \delta_{\mathrm{C}}\left({ }^{2} \mathrm{H}_{4}\right]$ methanol $)$ 12.4, 12.5, 12.6, 20.1, 20.2, 20.8, 27.9, 30.7, 33.7, 37.3, 38.0, 39.4, 39.8, 45.5, 62.0, $64.5,64.6,69.1,74.9,79.4,82.2,82.3,83.8,83.9,85.2,85.3$, 86.3, 86.4, 86.7, 87.3, 110.8, 112.0, 112.1, 118.6, 137.7, 138.0, 138.3, 152.1, 152.2, 152.3, 166.5, 172.2, 210.4 and 210.5 ; $\delta_{\mathrm{P}}\left[\left[^{2} \mathrm{H}_{4}\right]\right.$ methanol $)-1.50 ; \mathrm{m} / z(\mathrm{FAB}) 906\left(\mathrm{M}^{+}+1,30 \%\right), 834$ (100) and 720 (100).

Palladium hydroxide (20%) on carbon (20 mg) was added to a solution of the unsaturated C-linked trinucleotide 37 (30 mg , $0.026 \mathrm{mmol})$ in methanol $\left(1 \mathrm{~cm}^{3}\right)$. The reaction mixture was stirred under an atmosphere of hydrogen for 16 h , then filtered through Celite and the retained solids washed with methanol. The filtrate was concentrated under reduced pressure to afford the saturated C-linked trinucleotide 38 which was identical (NMR, IR, MS, TLC) to samples prepared from the dimethoxytrityl compound 43.

(5'-\{3-[(3'R)-3'-Deoxythymidin-3'-yl]-2-oxopropyl\}-5'-deoxy-thymidin- 3^{\prime}-yl)(thymidin- 5^{\prime}-yl)phosphinate 44

Ammonia was bubbled through a solution of the phosphate triester $38(20 \mathrm{mg}, 0.022 \mathrm{mmol})$ in methanol $\left(1 \mathrm{~cm}^{3}\right)$ for 10 min and the flask sealed and stored at room temperature for 16 h . The reaction mixture was then concentrated under reduced pressure. The residue was azeotroped with water-methanol ($1: 1$) and then with anhydrous methanol to give the title compound $44(18 \mathrm{mg}, 100 \%)$ as a colourless glass; $v_{\max } / \mathrm{cm}^{-1} 3500 \mathrm{br}$,

1692, 1472, 1274, 1228 and 1059; $\delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{4}\right]\right.$ methanol) 2.07, 2.08 and 2.12 (each $3 \mathrm{H}, \mathrm{d}, J 1$, Me), $2.18\left(3 \mathrm{H}, \mathrm{m}, 5^{\prime \prime \prime}-\mathrm{H}_{2}\right.$ and $\left.2^{\prime \prime \prime \prime \prime \prime}-\mathrm{H}\right)$, $2.46\left(4 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}_{2}, 2^{\prime \prime \prime}-\mathrm{H}\right.$ and $\left.2^{\prime \prime \prime \prime \prime \prime}-\mathrm{H}^{\prime}\right), 2.62(1 \mathrm{H}, \mathrm{ddd}, J 4,6$, $\left.14,2^{\prime \prime \prime}-\mathrm{H}^{\prime}\right), 2.8\left(5 \mathrm{H}, \mathrm{m}, 1^{\prime \prime \prime \prime}-\mathrm{H}_{2}, 3^{\prime \prime \prime \prime}-\mathrm{H}_{2}\right.$ and $\left.3^{\prime \prime \prime \prime \prime \prime}-\mathrm{H}\right), 3.90(2 \mathrm{H}, \mathrm{m}$, $4^{\prime \prime \prime \prime \prime \prime}-\mathrm{H}$ and $\left.5^{\prime \prime \prime \prime \prime \prime}-\mathrm{H}\right), 4.06\left(1 \mathrm{H}, \mathrm{dd}, J 3,14,5^{\prime \prime \prime \prime \prime \prime}-\mathrm{H}^{\prime}\right), 4.24(4 \mathrm{H}, \mathrm{m}$, $4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}_{2}$ and $\left.4^{\prime \prime \prime}-\mathrm{H}\right), 4.66\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 4.78\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime \prime \prime}-\mathrm{H}\right)$, $6.22\left(1 \mathrm{H}, \mathrm{dd}, J 3,7,1^{\prime \prime \prime \prime \prime}-\mathrm{H}\right), 6.38\left(1 \mathrm{H}, \mathrm{dd}, J 6,7.5,1^{\prime \prime \prime}-\mathrm{H}\right), 6.53$ $\left(1 \mathrm{H}, \mathrm{t}, J 7,1^{\prime}-\mathrm{H}\right), 7.58\left(1 \mathrm{H}, \mathrm{d}, J 1,6^{\prime \prime}-\mathrm{H}\right), 7.96(1 \mathrm{H}, \mathrm{d}, J 1,6-\mathrm{H})$ and $8.17\left(1 \mathrm{H}, \mathrm{d}, J 1,6^{\prime \prime \prime \prime \prime}-\mathrm{H}\right) ; \delta_{\mathrm{P}}\left(\left[{ }^{2} \mathrm{H}_{4}\right]\right.$ methanol $) 0.60 ; \mathrm{m} / \mathrm{z}(-\mathrm{ES})$ $809\left(\mathrm{M}^{-}, 55 \%\right)$ and 82 (100).

Acknowledgements

We thank the EPSRC and Glaxo Group Research for a CASE studentship (to B. J. M.) and Dr P. Woodward of Glaxo for many helpful discussions.

2 K. Butterfield and E. J. Thomas, J. Chem. Soc., Perkin Trans. 1, 1998, 737.
3 K. Butterfield and E. J. Thomas, Synlett, 1993, 411.
4 C. K. Chu, B. Doboszewski, W. Schmidt, C. V. Ullas and P. Van Roey, J. Org. Chem., 1989, 54, 2767.
5 J. L. Van Aerschot, L. Jie and P. Herdewijn, Tetrahedron Lett., 1991, 32, 1905.
6 B. H. Lipshutz and J. J. Tegram, Tetrahedron Lett., 1980, 21, 3343.
7 J. Fiandor and S. Y. Tam, Tetrahedron Lett., 1990, 31, 597.
8 J. A. Montgomery and H. J. Thomas, J. Org. Chem., 1981, 46, 594.
9 K. E. Pfitzner and J. G. Moffatt, J. Am. Chem. Soc., 1965, 87, 5661.
10 A. D. Barone, J.-Y. Tang and M. H. Caruthers, Nucleic Acid Res., 1984, 12, 4051.
11 N. D. Sinha, J. Biernat, J. McManus and H. Koster, Nucleic Acid Res., 1984, 11, 4539.
12 J. Lebreton, A. De Mesmaeker and A. Waldner, Synlett, 1994, 54; S. Wendeborn, R. M. Wolf and A. De Mesmaeker, Tetrahedron Lett., 1995, 36, 6879.
13 G. R. Weihe and T. C. McMorris, J. Org. Chem., 1978, 43, 3942.

References

1 A. De Mesmaeker, R. Haner, P. Martin and H. E. Moser, Acc. Chem. Res., 1995, 28, 366; E. Uhlmann and A. Peyman, Chem. Rev., 1990, 90, 543; R. S. Varma, Synlett, 1993, 621.

Paper 7/06858A
Received 22nd September 1997 Accepted 22nd October 1997

